High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors

被引:1381
作者
Wu, Zhong-Shuai [1 ]
Ren, Wencai [1 ]
Wang, Da-Wei [2 ]
Li, Feng [1 ]
Liu, Bilu [1 ]
Cheng, Hui-Ming [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
[2] Univ Queensland, ARC Ctr Excellence Funct Nanomat, AIBN, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会;
关键词
graphene; manganese oxide; composite; asymmetric; electrochemical capacitor; ACTIVATED CARBON; AQUEOUS-ELECTROLYTE; COMPOSITE ELECTRODES; MANGANESE-DIOXIDE; LAYER CAPACITOR; V; SUPERCAPACITORS; STORAGE; PERFORMANCE; INTERCALATION;
D O I
10.1021/nn101754k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to achieve high energy and power densities, we developed a high-voltage asymmetric electrochemical capacitor (EC) based on graphene as negative electrode and a MnO2 nanowire/graphene composite (MGC) as positive electrode in a neutral aqueous Na2SO4 solution as electrolyte. MGC was prepared by solution-phase assembly of graphene sheets and alpha-MnO2 nanowires. Such aqueous electrolyte-based asymmetric ECs can be cycled reversibly in the high-voltage region of 0-2.0 V and exhibit a superior energy density of 30.4 Wh kg(-1), which is much higher than those of symmetric ECs based on graphene//graphene (2.8 Wh kg(-1)) and MGC//MGC (5.2 Wh kg(-1)). Moreover, they present a high power density (5000 W kg(-1) at 7.0 Wh kg(-1)) and acceptable cycling performance of similar to 79% retention after 1000 cycles. These findings open up the possibility of graphene-based composites for applications in safe aqueous electrolyte-based high-voltage asymmetric ECs with high energy and power densities.
引用
收藏
页码:5835 / 5842
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]  
Belanger D., 2008, Interface, V17, P49
[3]   A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J].
Brousse, T ;
Toupin, M ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A614-A622
[4]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[5]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[6]   Manganese oxide/carbon composite electrodes for electrochemical capacitors [J].
Chang, JK ;
Lin, CT ;
Tsai, WT .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (07) :666-671
[7]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[8]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[9]   Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution [J].
Du, Xuan ;
Wang, Chengyang ;
Chen, Mingming ;
Jiao, Yang ;
Wang, Jin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (06) :2643-2646
[10]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950