Kinetics of random aggregation-fragmentation processes with multiple components

被引:25
作者
Laurenzi, IJ
Diamond, SL
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Univ Penn, Inst Med & Engn, Dept Chem Engn, Philadelphia, PA 19104 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.051103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A computationally efficient algorithm is presented for exact simulation of the stochastic time evolution of spatially homogeneous aggregation-fragmentation processes featuring multiple components or conservation laws. The algorithm can predict the average size and composition distributions of aggregating particles as well as their fluctuations, regardless of the functional form (e.g., composition dependence) of the aggregation or fragmentation kernels. Furthermore, it accurately predicts the complete time evolutions of all moments of the size and composition distributions, even for systems that exhibit gel transitions. We demonstrate the robustness and utility of the algorithm in case studies of linear and branched polymerization processes, the last of which is a two-component process. These simulation results provide the stochastic description of these processes and give new insights into their gel transitions, fluctuations, and long-time behavior when deterministic approaches to aggregation kinetics may not be reliable.
引用
收藏
页码:15 / 051103
页数:15
相关论文
共 32 条
[1]  
BAYEWITZ MH, 1974, J ATMOS SCI, V31, P1604, DOI 10.1175/1520-0469(1974)031<1604:TEOCIA>2.0.CO
[2]  
2
[3]   NOTE ON THE KINETICS OF SYSTEMS MANIFESTING SIMULTANEOUS POLYMERIZATION-DEPOLYMERIZATION PHENOMENA [J].
BLATZ, PJ ;
TOBOLSKY, AV .
JOURNAL OF PHYSICAL CHEMISTRY, 1945, 49 (02) :77-80
[4]   STOCHASTIC MODELS FOR SECOND-ORDER CHEMICAL REACTION KINETICS . EQUILIBRIUM STATE [J].
DARVEY, IG ;
NINHAM, BW ;
STAFF, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (06) :2145-+
[5]  
Filippov A., 1961, Theory Probab. Appl., V6, P275, DOI [10.1137/1106036, DOI 10.1137/1106036, DOI 10.1137/110603]
[6]  
GILLESPIE DT, 1972, J ATMOS SCI, V29, P1496, DOI 10.1175/1520-0469(1972)029<1496:TSCMFC>2.0.CO
[7]  
2
[8]  
GILLESPIE DT, 1975, J ATMOS SCI, V32, P1977, DOI 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO
[9]  
2
[10]  
GILLESPIE DT, 1976, J COMPUT PHYS, V22, P304