A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells

被引:994
作者
Marchetto, Maria C. N. [2 ]
Carromeu, Cassiano [1 ]
Acab, Allan [1 ]
Yu, Diana [2 ]
Yeo, Gene W. [3 ]
Mu, Yangling [2 ]
Chen, Gong [4 ]
Gage, Fred H. [2 ]
Muotri, Alysson R. [1 ]
机构
[1] Univ Calif San Diego, Sch Med, Rady Childrens Hosp San Diego,Stem Cell Program, Dept Pediat,Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[2] Salk Inst Biol Studies, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Sch Med, Dept Cellular & Mol Med, Stem Cell Program, La Jolla, CA 92093 USA
[4] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
基金
美国国家卫生研究院;
关键词
AUTISM-SPECTRUM; MOUSE MODEL; MECP2; BRAIN; DISEASE; MUTATIONS; PHENOTYPE; SYMPTOMS; GENE; PHOSPHORYLATION;
D O I
10.1016/j.cell.2010.10.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autism spectrum disorders (ASD) are complex neurodevelopmental diseases in which different combinations of genetic mutations may contribute to the phenotype. Using Rett syndrome (RTT) as an ASD genetic model, we developed a culture system using induced pluripotent stem cells (iPSCs) from RTT patients' fibroblasts. RTT patients' iPSCs are able to undergo X-inactivation and generate functional neurons. Neurons derived from RTT-iPSCs had fewer synapses, reduced spine density, smaller soma size, altered calcium signaling and electrophysiological defects when compared to controls. Our data uncovered early alterations in developing human RTT neurons. Finally, we used RTT neurons to test the effects of drugs in rescuing synaptic defects. Our data provide evidence of an unexplored developmental window, before disease onset, in RTT syndrome where potential therapies could be successfully employed. Our model recapitulates early stages of a human neurodevelopmental disease and represents a promising cellular tool for drug screening, diagnosis and personalized treatment.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 57 条
[1]  
ALLEN RC, 1992, AM J HUM GENET, V51, P1229
[2]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[3]   Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology [J].
Ballas, Nurit ;
Lioy, Daniel T. ;
Grunseich, Christopher ;
Mandel, Gail .
NATURE NEUROSCIENCE, 2009, 12 (03) :311-317
[4]   MeCP2, a key contributor to neurological disease, activates and represses transcription [J].
Chahrour, Maria ;
Jung, Sung Yun ;
Shaw, Chad ;
Zhou, Xiaobo ;
Wong, Stephen T. C. ;
Qin, Jun ;
Zoghbi, Huda Y. .
SCIENCE, 2008, 320 (5880) :1224-1229
[5]   MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number [J].
Chao, Hsiao-Tuan ;
Zoghbi, Huda Y. ;
Rosenmund, Christian .
NEURON, 2007, 56 (01) :58-65
[6]   Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations [J].
Chapleau, Christopher A. ;
Calfa, Gaston D. ;
Lane, Meredith C. ;
Albertson, Asher J. ;
Larimore, Jennifer L. ;
Kudo, Shinichi ;
Armstrong, Dawna L. ;
Percy, Alan K. ;
Pozzo-Miller, Lucas .
NEUROBIOLOGY OF DISEASE, 2009, 35 (02) :219-233
[7]   Regression in individuals with Rett syndrome [J].
Charman, T ;
Cass, H ;
Owen, L ;
Wigram, T ;
Slonims, V ;
Weeks, L ;
Wisbeach, A ;
Reilly, S .
BRAIN & DEVELOPMENT, 2002, 24 (05) :281-283
[8]   Mild overexpression of MeCP2 causes a progressive neurological disorder in mice [J].
Collins, AL ;
Levenson, JM ;
Vilaythong, AP ;
Richman, R ;
Armstrong, DL ;
Noebels, JL ;
Sweatt, JD ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2004, 13 (21) :2679-2689
[9]   Evidence of brain overgrowth in the first year of life in autism [J].
Courchesne, E ;
Carper, R ;
Akshoomoff, N .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 290 (03) :337-344
[10]   Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome [J].
De Filippis, B. ;
Ricceri, L. ;
Laviola, G. .
GENES BRAIN AND BEHAVIOR, 2010, 9 (02) :213-223