Coarsening dynamics of the one-dimensional Cahn-Hilliard model

被引:23
作者
Argentina, M
Clerc, MG
Rojas, R
Tirapegui, E
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] DAMTP, Cambridge CB3 9EW, England
[3] Ctr Fis No Lineal & Sistemas Complejos Santiago, Santiago, Chile
[4] CNRS, UNSA, UMR 6618, Inst Non Lineaire Nice, F-06560 Valbonne, France
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevE.71.046210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of one-dimensional Cahn-Hilliard model is studied. The stationary and particle-type solutions, the bubbles, are perused as a function of initial conditions, boundary conditions, and system size. We characterize the bubble solutions which are involved in the coarsening dynamics and establish the bifurcation scenarios of the system. A set of ordinary differential equation permits us to describe the coarsening dynamics in very good agreement with numerical simulations. We also compare these dynamics with the bubble dynamics deduced from the classical kink interaction computation where our model seems to be more appropriated. In the case of two bubbles, we deduce analytical expressions for the bubble's position and the bubble's width. Besides, a simple description of the ulterior dynamics is presented.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[3]  
ARGENTINA M, UNPUB
[4]   Experimental evidence for zigzag instability of solitary stripes in a gas discharge system [J].
Astrov, YA ;
Ammelt, E ;
Purwins, HG .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3129-3132
[5]   THE DYNAMICS OF NUCLEATION FOR THE CAHN-HILLIARD EQUATION [J].
BATES, PW ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) :990-1008
[6]   METASTABLE PATTERNS FOR THE CAHN-HILLIARD EQUATION .1. [J].
BATES, PW ;
XUN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (02) :421-457
[7]   METASTABLE PATTERNS FOR THE CAHN-HILLIARD EQUATION .2. LAYER DYNAMICS AND SLOW INVARIANT MANIFOLD [J].
BATES, PW ;
XUN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) :165-216
[8]  
BENAMAR M, 1991, GROWTH FORM NON LINE
[9]  
BODENSCHATZ E, 1990, NEW TRENDS NONLINEAR
[10]   GEOMETRICAL APPROACH TO MOVING-INTERFACE DYNAMICS [J].
BROWER, RC ;
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1111-1114