Protein retention in the endoplasmic reticulum, blockade of programmed cell death and autophagy selectively occur in spinal cord motoneurons after glutamate receptor-mediated injury

被引:45
作者
Tarabal, O
Calderó, J
Casas, C
Oppenheim, RW
Esquerda, JE
机构
[1] Univ Lleida, Fac Med, Dept Ciencies Med Basiques, Unitat Neurobiol Cellular, E-25008 Lleida, Catalonia, Spain
[2] Wake Forest Univ, Sch Med, Dept Neurobiol, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Sch Med, Anat & Neurosci Program, Winston Salem, NC 27157 USA
关键词
D O I
10.1016/j.mcn.2005.03.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We previously showed that, in contrast to the acute administration of NMDA, chronic treatment of chick embryos from embryonic day (E) 5 to E9 with this excitotoxin rescues motoneurons (MNs) from programmed cell death. Following this protocol, MNs are also protected against later acute excitotoxic cell death. Previously, we found that MNs treated from E5 to E9 develop long-lasting changes involving vesicular trafficking and other organelle pathology similar to the abnormalities observed in certain chronic neurological diseases including arnyotrophic lateral sclerosis (ALS). Here we extend these previous results by showing that protein aggregation within the endoplasmic reticulum (ER) takes place selectively in MNs as an early event of chronic excitotoxicity. Although protein aggregates do not induce appreciable MN death, they foreshadow the activation of a conspicuous autophagic response leading to long-lasting degenerative changes that causes dysfunction but not immediate cell death. Chronic early treatment with NMDA results in a transient (between E6 and E10) lack of vulnerability to undergo cell death induced by different types of stimuli. It is suggested that blockade of protein translation in stressed ER may inhibit apoptosis in NMDA-treated MNs. However, in embryos older than E12, degenerating MNs are sensitized to die after limb ablation (axotomy) and accumulate hyperphosphorylated neuofilaments. Moreover. chronic NMDA treatment does not induce the upregulation of molecular chaperones in spinal cord. These results represent a new model of glutamate receptor mediated neurotoxicity that selectively occurs in spinal cord MNs and also demonstrate an experimental system that may be valuable for understanding the mechanisms involved in chronic MN degeneration and in certain cytological hallmarks of ALS-diseased MNs such as inclusion bodies. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 97 条
[1]  
Ayala V, 1999, J NEUROBIOL, V38, P171, DOI 10.1002/(SICI)1097-4695(19990205)38:2<171::AID-NEU2>3.0.CO
[2]  
2-#
[3]  
Batulan Z, 2003, J NEUROSCI, V23, P5789
[4]   N-methyl-D-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway [J].
Borsello, T ;
Croquelois, K ;
Hornung, JP ;
Clarke, PGH .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 18 (03) :473-485
[5]   Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability [J].
Brostrom, MA ;
Brostrom, CO .
CELL CALCIUM, 2003, 34 (4-5) :345-363
[6]   The autophagosomal-lysosomal compartment in programmed cell death [J].
Bursch, W .
CELL DEATH AND DIFFERENTIATION, 2001, 8 (06) :569-581
[7]   Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: The role of autophagy [J].
Bursch, W ;
Ellinger, A ;
Kienzl, H ;
Torok, L ;
Pandey, S ;
Sikorska, M ;
Walker, R ;
Hermann, RS .
CARCINOGENESIS, 1996, 17 (08) :1595-1607
[8]   CALCITONIN GENE-RELATED PEPTIDE IN RAT SPINAL-CORD MOTONEURONS - SUBCELLULAR-DISTRIBUTION AND CHANGES INDUCED BY AXOTOMY [J].
CALDERO, J ;
CASANOVAS, A ;
SORRIBAS, A ;
ESQUERDA, JE .
NEUROSCIENCE, 1992, 48 (02) :449-461
[9]  
Caldero J, 1997, J COMP NEUROL, V387, P73
[10]  
Capano CP, 2001, BIOESSAYS, V23, P24, DOI 10.1002/1521-1878(200101)23:1<24::AID-BIES1004>3.0.CO