Congruences of p-adic integer order Bernoulli numbers

被引:15
作者
Adelberg, A [1 ]
机构
[1] GRINNELL COLL,DEPT MATH,GRINNELL,IA 50112
关键词
D O I
10.1006/jnth.1996.0103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some new congruences of p-adic integer order Bernoulli numbers. These generalize the Kummer congruences for ordinary Bernoulli numbers. We apply our congruences to prove irreducibility of certain Bernoulli polynomials with order divisible by p and to get new congruences for Stirling numbers. (C) 1996 Academic Press, Inc.
引用
收藏
页码:374 / 388
页数:15
相关论文
共 12 条
[1]   ON THE DEGREES OF IRREDUCIBLE FACTORS OF HIGHER-ORDER BERNOULLI POLYNOMIALS [J].
ADELBERG, A .
ACTA ARITHMETICA, 1992, 62 (04) :329-342
[2]   A FINITE-DIFFERENCE APPROACH TO DEGENERATE BERNOULLI AND STIRLING POLYNOMIALS [J].
ADELBERG, A .
DISCRETE MATHEMATICS, 1995, 140 (1-3) :1-21
[3]  
[Anonymous], 1924, DIFFERENZENRECHNUNG
[4]  
Bergum G., 1993, APPL FIBONACCI NUMBE, V5, P355
[5]   SOME PROPERTIES OF NORLUND POLYNOMIAL B(X)N [J].
CARLITZ, L .
MATHEMATISCHE NACHRICHTEN, 1967, 33 (5-6) :297-&
[6]   SOME THEOREMS ON BERNOULLI AND EULER NUMBERS OF HIGHER ORDER [J].
CARLITZ, L ;
OLSON, FR .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (03) :405-421
[7]  
Carlitz L., 1952, PACIFIC J MATH, V2, P127
[8]  
HOWARD FT, 1994, FIBONACCI QUART, V32, P316
[9]  
Ireland K., 1990, CLASSICAL INTRO MODE
[10]   P-ADIC PROOFS OF CONGRUENCES FOR BERNOULLI NUMBERS [J].
JOHNSON, W .
JOURNAL OF NUMBER THEORY, 1975, 7 (02) :251-265