Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change

被引:261
作者
Heald, C. L. [1 ,2 ]
Henze, D. K. [3 ]
Horowitz, L. W. [4 ]
Feddema, J. [5 ]
Lamarque, J. -F. [6 ]
Guenther, A. [6 ]
Hess, P. G. [6 ]
Vitt, F. [6 ]
Seinfeld, J. H. [3 ,6 ]
Goldstein, A. H. [1 ]
Fung, I. [1 ]
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80524 USA
[3] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
[4] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 80540 USA
[5] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA
[6] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1029/2007JD009092
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The sensitivity of secondary organic aerosol (SOA) concentration to changes in climate and emissions is investigated using a coupled global atmosphere-land model driven by the year 2100 IPCC A1B scenario predictions. The Community Atmosphere Model (CAM3) is updated with recent laboratory determined yields for SOA formation from monoterpene oxidation, isoprene photooxidation and aromatic photooxidation. Biogenic emissions of isoprene and monoterpenes are simulated interactively using the Model of Emissions of Gases and Aerosols (MEGAN2) within the Community Land Model (CLM3). The global mean SOA burden is predicted to increase by 36% in 2100, primarily the result of rising biogenic and anthropogenic emissions which independently increase the burden by 26% and 7%. The later includes enhanced biogenic SOA formation due to increased emissions of primary organic aerosol (5-25% increases in surface SOA concentrations in 2100). Climate change alone (via temperature, removal rates, and oxidative capacity) does not change the global mean SOA production, but the global burden increases by 6%. The global burden of anthropogenic SOA experiences proportionally more growth than biogenic SOA in 2100 from the net effect of climate and emissions (67% increase predicted). Projected anthropogenic land use change for 2100 (A2) is predicted to reduce the global SOA burden by 14%, largely the result of cropland expansion. South America is the largest global source region for SOA in the present day and 2100, but Asia experiences the largest relative growth in SOA production by 2100 because of the large predicted increases in Asian anthropogenic aromatic emissions. The projected decrease in global sulfur emissions implies that SOA will contribute a progressively larger fraction of the global aerosol burden.
引用
收藏
页数:16
相关论文
共 98 条
  • [1] Direct and indirect impacts of fire on isoprenoid emissions from Mediterranean vegetation
    Alessio, GA
    De Lillis, M
    Fanelli, M
    Pinelli, P
    Loreto, F
    [J]. FUNCTIONAL ECOLOGY, 2004, 18 (03) : 357 - 364
  • [2] Strong present-day aerosol cooling implies a hot future
    Andreae, MO
    Jones, CD
    Cox, PM
    [J]. NATURE, 2005, 435 (7046) : 1187 - 1190
  • [3] Process-based estimates of terrestrial ecosystem isoprene emissions:: incorporating the effects of a direct CO2-isoprene interaction
    Arneth, A.
    Niinemets, U.
    Pressley, S.
    Back, J.
    Hari, P.
    Karl, T.
    Noe, S.
    Prentice, I. C.
    Serca, D.
    Hickler, T.
    Wolf, A.
    Smith, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 : 31 - 53
  • [4] TRANSPORT AND RESIDENCE TIMES OF TROPOSPHERIC AEROSOLS INFERRED FROM A GLOBAL 3-DIMENSIONAL SIMULATION OF PB-210
    BALKANSKI, YJ
    JACOB, DJ
    GARDNER, GM
    GRAUSTEIN, WC
    TUREKIAN, KK
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D11) : 20573 - 20586
  • [5] Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry
    Barth, MC
    Rasch, PJ
    Kiehl, JT
    Benkovitz, CM
    Schwartz, SE
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D1) : 1387 - 1415
  • [6] BOLSCHER MV, 2007, EVK2CT200200170 EU
  • [7] Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models
    Bonan, GB
    Levis, S
    Kergoat, L
    Oleson, KW
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (02)
  • [8] MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description
    Brasseur, GP
    Hauglustaine, DA
    Walters, S
    Rasch, PJ
    Muller, JF
    Granier, C
    Tie, XX
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D21) : 28265 - 28289
  • [9] Impact of climate change on the future chemical composition of the global troposphere
    Brasseur, Guy P.
    Schultz, Martin
    Granier, Claire
    Saunois, Marielle
    Diehl, Thomas
    Botzet, Michael
    Roeckner, Erich
    Walters, Stacy
    [J]. JOURNAL OF CLIMATE, 2006, 19 (16) : 3932 - 3951
  • [10] Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds
    Carlton, AG
    Turpin, BJ
    Lim, HJ
    Altieri, KE
    Seitzinger, S
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)