A new type of limit theorems for the one-dimensional quantum random walk

被引:146
作者
Konno, N [1 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
关键词
quantum random walk; the Hadamard walk; limit theorems;
D O I
10.2969/jmsj/1150287309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the one-dimensional quantum random walk X-n(phi) at time n starting from initial quoit state W determined by 2 x 2 unitary matrix U. We give a combinatorial expression for the characteristic function of X-n(phi). The expression clarifies the dependence of it on components of unitary matrix U and initial qubit state phi. As a consequence, we present a new type of limit theorems for the quantum random walk. In contrast with the de Moivre-Laplace limit theorem, our symmetric case implies that X-n(phi)/n converges weakly to a limit Z(phi) as n - infinity, where Z(phi) has a density 1/pi(1 - x(2))root 1 - 2x(2) for x is an element of (-1/root 2,1/root 2). Moreover we discuss some known simulation results based on our limit theorems.
引用
收藏
页码:1179 / 1195
页数:17
相关论文
共 13 条
[1]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[2]  
[Anonymous], 2004, INTERDISCIP INF SCI
[3]   ON ASYMPTOTICS OF JACOBI-POLYNOMIALS [J].
CHEN, LC ;
ISMAIL, MEH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1442-1449
[4]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[5]   Quantum Random Walks in One Dimension [J].
Konno, Norio .
QUANTUM INFORMATION PROCESSING, 2002, 1 (05) :345-354
[6]   Quantum walks in higher dimensions [J].
Mackay, TD ;
Bartlett, SD ;
Stephenson, LT ;
Sanders, BC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12) :2745-2753
[7]   From quantum cellular automata to quantum lattice gases [J].
Meyer, DA .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) :551-574
[8]  
MOORE C, 2001, QUANTPH0104137
[9]  
Nayak A., 2000, QUANTPH0010117
[10]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744