Spatial Upscaling of Sparse Soil Moisture Observations Based on Ridge Regression

被引:32
作者
Kang, Jian [1 ]
Jin, Rui [1 ,2 ]
Li, Xin [1 ,2 ]
Zhang, Yang [1 ]
Zhu, Zhongli [3 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China
[2] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
ridge regression; sparse ground-based sites; soil moisture; upscaling; validation of remote sensing products; NETWORK; STABILITY; SMOS; PRECIPITATION; PRODUCTS;
D O I
10.3390/rs10020192
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Available ground-based observation networks for the validation of soil moisture remote sensing products are commonly sparse; thus, ground truth determinations are difficult at the validated remote sensing pixel scale. Based on the consistency of temporal trends between ground truth and in situ measurements, it is feasible to estimate ground truth by building a linear relationship between temporal sparse ground observations and truth samples. Herein, auxiliary remote sensing data with a moderate spatial resolution can be transformed into truth samples depending on the stronger representation of remote sensing data to spatial heterogeneity in the validated pixel relative to limited sites. When solving weighting coefficients for the relationship model, the underlying correlations among the in situ measurements cause the multicollinearity problem, leading to failed predictions. An upscaling algorithm called ridge regression (RR) addresses this by introducing a regularization parameter. With sparse sites, the RR method is tested in two cases employing six and nine sites, and compared with the ordinary least squares and the arithmetic mean. The upscaling results of the RR method show higher prediction accuracies compared to the other two methods. When the RR method is used, the six-site case has the same estimation accuracy as the nine-site case due to maintaining the diversity of in situ measurements through the analysis of the ridge trace and variance inflation factor (VIF). Thus, the ridge trace and VIF analysis is considered as the optimal selection method for the existing observation networks if the RR method will be used in future validation work. With a different number of sites, the RR method always displays the best estimation accuracy and is not sensitive to the number of sites, which indicates that the RR method can potentially upscale sparse sites. However, if the sites are too few, e.g., one to four, it is difficult to perform the upscaling method.
引用
收藏
页数:11
相关论文
共 32 条
[1]   SMOS:: The mission and the system [J].
Barre, Hubert M. J. P. ;
Duesmann, Berthyl ;
Kerr, Yann H. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03) :587-593
[2]   Improving runoff prediction through the assimilation of the ASCAT soil moisture product [J].
Brocca, L. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Naeimi, V. ;
Bartalis, Z. ;
Hasenauer, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (10) :1881-1893
[3]   Validation of SMAP surface soil moisture products with core validation sites [J].
Colliander, A. ;
Jackson, T. J. ;
Bindlish, R. ;
Chan, S. ;
Das, N. ;
Kim, S. B. ;
Cosh, M. H. ;
Dunbar, R. S. ;
Dang, L. ;
Pashaian, L. ;
Asanuma, J. ;
Aida, K. ;
Berg, A. ;
Rowlandson, T. ;
Bosch, D. ;
Caldwell, T. ;
Caylor, K. ;
Goodrich, D. ;
al Jassar, H. ;
Lopez-Baeza, E. ;
Martinez-Fernandez, J. ;
Gonzalez-Zamora, A. ;
Livingston, S. ;
McNairn, H. ;
Pacheco, A. ;
Moghaddam, M. ;
Montzka, C. ;
Notarnicola, C. ;
Niedrist, G. ;
Pellarin, T. ;
Prueger, J. ;
Pulliainen, J. ;
Rautiainen, K. ;
Ramos, J. ;
Seyfried, M. ;
Starks, P. ;
Su, Z. ;
Zeng, Y. ;
van der Velde, R. ;
Thibeault, M. ;
Dorigo, W. ;
Vreugdenhil, M. ;
Walker, J. P. ;
Wu, X. ;
Monerris, A. ;
O'Neill, P. E. ;
Entekhabi, D. ;
Njoku, E. G. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :215-231
[4]   Deploying temporary networks for upscaling of sparse network stations [J].
Coopersmith, Evan J. ;
Cosh, Michael H. ;
Bell, Jesse E. ;
Kelly, Victoria ;
Hall, Mark ;
Palecki, Michael A. ;
Temimi, Marouane .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 52 :433-444
[5]   Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River [J].
Coopersmith, Evan J. ;
Cosh, Michael H. ;
Petersen, Walt A. ;
Prueger, John ;
Niemeier, James J. .
JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (03) :1087-1101
[6]   Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates [J].
Cosh, MH ;
Jackson, TJ ;
Bindlish, R ;
Prueger, JH .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (04) :427-435
[7]   Temporal persistence and stability of surface soil moisture in a semi-arid watershed [J].
Cosh, Michael H. ;
Jackson, Thomas J. ;
Moran, Susan ;
Bindlish, Raiat .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (02) :304-313
[8]   UPSCALING SPARSE GROUND-BASED SOIL MOISTURE OBSERVATIONS FOR THE VALIDATION OF COARSE-RESOLUTION SATELLITE SOIL MOISTURE PRODUCTS [J].
Crow, Wade T. ;
Berg, Aaron A. ;
Cosh, Michael H. ;
Loew, Alexander ;
Mohanty, Binayak P. ;
Panciera, Rocco ;
de Rosnay, Patricia ;
Ryu, Dongryeol ;
Walker, Jeffrey P. .
REVIEWS OF GEOPHYSICS, 2012, 50
[9]   Upscaling of field-scale soil moisture measurements using distributed land surface modeling [J].
Crow, WT ;
Ryu, D ;
Famiglietti, JS .
ADVANCES IN WATER RESOURCES, 2005, 28 (01) :1-14
[10]   The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements [J].
Dorigo, W. A. ;
Wagner, W. ;
Hohensinn, R. ;
Hahn, S. ;
Paulik, C. ;
Xaver, A. ;
Gruber, A. ;
Drusch, M. ;
Mecklenburg, S. ;
van Oevelen, P. ;
Robock, A. ;
Jackson, T. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (05) :1675-1698