FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa

被引:338
作者
Shimada, T
Urakawa, I
Yamazaki, Y
Hasegawa, H
Hino, R
Yoneya, T
Takeuchi, Y
Fujita, T
Fukumoto, S
Yamashita, T
机构
[1] Kirin Brewery Co Ltd, Pharmaceut Res Labs, Gunma 3701295, Japan
[2] Univ Tokyo, Sch Med, Dept Med, Div Endocrinol,Bunkyo Ku, Tokyo 1138655, Japan
[3] Tokyo Univ Hosp, Dept Lab Med, Bunkyo Ku, Tokyo 1138655, Japan
关键词
FGF-23; hypophosphatemic rickets; 1,25-dihydroxyvitamin D; sodium phosphate cotransporter type IIa;
D O I
10.1016/j.bbrc.2003.12.102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroblast growth factor (FGF)-23 was identified as a causative factor of tumor-induced osteomalacia and also as a responsible gene for autosomal dominant hypophosphatemic rickets. To clarify the pathophysiological roles of FGF-23 in these diseases, we generated its transgenic mice. The transgenic mice expressing human FGF-23 reproduced the common clinical features of these diseases such as hypophosphatemia probably due to increased renal phosphate wasting, inappropriately low serum 1,25-di-hydroxyvitamin D level, and rachitic bone. The renal phosphate wasting in the transgenic mice was accompanied by the reduced expression of sodium phosphate cotransporter type IIa in renal proximal tubules. These results reinforce the notion that the excessive action of FGF-23 plays a causative role in the development of several hypophosphatemic rickets/osteomalacia. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 26 条
[1]   The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency [J].
Bai, XY ;
Miao, DS ;
Goltzman, D ;
Karaplis, AC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9843-9849
[2]   Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice [J].
Beck, L ;
Soumounou, Y ;
Martel, J ;
Krishnamurthy, G ;
Gauthier, C ;
Goodyer, CG ;
Tenenhouse, HS .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (06) :1200-1209
[3]   Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities [J].
Beck, L ;
Karaplis, AC ;
Amizuka, N ;
Hewson, AS ;
Ozawa, H ;
Tenenhouse, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5372-5377
[4]   FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate [J].
Bowe, AE ;
Finnegan, R ;
de Beur, SMJ ;
Cho, J ;
Levine, MA ;
Kumar, R ;
Schiavi, SC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 284 (04) :977-981
[5]   Human recombinant endopeptidase PHEX has a strict S1′ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein [J].
Campos, M ;
Couture, C ;
Hirata, IY ;
Juliano, MA ;
Loisel, TP ;
Crine, P ;
Juliano, L ;
Boileau, G ;
Carmona, AK .
BIOCHEMICAL JOURNAL, 2003, 373 :271-279
[6]  
Drezner Marc K., 1996, P263
[7]   PHEX gene and hypophosphatemia [J].
Drezner, MK .
KIDNEY INTERNATIONAL, 2000, 57 (01) :9-18
[8]   A GENE (PEX) WITH HOMOLOGIES TO ENDOPEPTIDASES IS MUTATED IN PATIENTS WITH X-LINKED HYPOPHOSPHATEMIC RICKETS [J].
FRANCIS, F ;
HENNIG, S ;
KORN, B ;
REINHARDT, R ;
DEJONG, P ;
POUSTKA, A ;
LEHRACH, H ;
ROWE, PSN ;
GOULDING, JN ;
SUMMERFIELD, T ;
MOUNTFORD, R ;
READ, AP ;
POPOWSKA, E ;
PRONICKA, E ;
DAVIES, KE ;
ORIORDAN, JLH ;
ECONS, MJ ;
NESBITT, T ;
DREZNER, MK ;
OUDET, C ;
PANNETIER, S ;
HANAUER, A ;
STROM, TM ;
MEINDL, A ;
LORENZ, B ;
CAGNOLI, M ;
MOHNIKE, KL ;
MURKEN, J ;
MEITINGER, T .
NATURE GENETICS, 1995, 11 (02) :130-136
[9]  
GRIFFIN MD, 2003, ANN REV NUTR
[10]   Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. [J].
Jonsson, KB ;
Zahradnik, R ;
Larsson, T ;
White, KE ;
Sugimoto, T ;
Imanishi, Y ;
Yamamoto, T ;
Hampson, G ;
Koshiyama, H ;
Ljunggren, Ö ;
Oba, K ;
Yang, IM ;
Miyauchi, A ;
Econs, MJ ;
Lavigne, J ;
Jüppner, H .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (17) :1656-1663