Reductive carboxylation supports growth in tumour cells with defective mitochondria

被引:992
作者
Mullen, Andrew R. [1 ]
Wheaton, William W. [2 ,3 ]
Jin, Eunsook S. [4 ,5 ]
Chen, Pei-Hsuan [1 ]
Sullivan, Lucas B. [2 ,3 ]
Cheng, Tzuling [1 ]
Yang, Youfeng [6 ]
Linehan, W. Marston [6 ]
Chandel, Navdeep S. [2 ,3 ]
DeBerardinis, Ralph J. [1 ,7 ,8 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA
[2] Northwestern Univ, Dept Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[4] Univ Texas SW Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[5] Univ Texas SW Med Ctr Dallas, Adv Imaging Res Ctr, Dallas, TX 75390 USA
[6] NCI, Urol Oncol Branch, Bethesda, MD 20892 USA
[7] Univ Texas SW Med Ctr Dallas, McDermott Ctr Human Growth & Dev, Dallas, TX 75390 USA
[8] Univ Texas SW Med Ctr Dallas, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75235 USA
关键词
GLUTAMINE-METABOLISM; CANCER; DEHYDROGENASE; GENE; PARAGANGLIOMA; MUTATIONS; LIVER; LINE; FLUX; ROS;
D O I
10.1038/nature10642
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells(1,2). In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis(3). Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function(4-7), and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetylcoenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.
引用
收藏
页码:385 / U171
页数:5
相关论文
共 28 条
  • [1] Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma
    Baysal, BE
    Ferrell, RE
    Willett-Brozick, JE
    Lawrence, EC
    Myssiorek, D
    Bosch, A
    van der Mey, A
    Taschner, PEM
    Rubinstein, WS
    Myers, EN
    Richard, CW
    Cornelisse, CJ
    Devilee, P
    Devlin, B
    [J]. SCIENCE, 2000, 287 (5454) : 848 - 851
  • [2] Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
    Brunelle, JK
    Bell, EL
    Quesada, NM
    Vercauteren, K
    Tiranti, V
    Zeviani, M
    Scarpulla, RC
    Chandel, NS
    [J]. CELL METABOLISM, 2005, 1 (06) : 409 - 414
  • [3] Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
    Cheng, Tzuling
    Sudderth, Jessica
    Yang, Chendong
    Mullen, Andrew R.
    Jin, Eunsook S.
    Mates, Jose M.
    DeBerardinis, Ralph J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (21) : 8674 - 8679
  • [4] Reverse flux through cardiac NADP+-isocitrate dehydrogenase under normoxia and ischemia
    Comte, B
    Vincent, G
    Bouchard, B
    Benderdour, M
    Des Rosiers, C
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (04): : H1505 - H1514
  • [5] Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
    DeBerardinis, R. J.
    Cheng, T.
    [J]. ONCOGENE, 2010, 29 (03) : 313 - 324
  • [6] Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    DeBerardinis, Ralph J.
    Mancuso, Anthony
    Daikhin, Evgueni
    Nissim, Ilana
    Yudkoff, Marc
    Wehrli, Suzanne
    Thompson, Craig B.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) : 19345 - 19350
  • [7] DESROSIERS C, 1994, J BIOL CHEM, V269, P27179
  • [8] Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
    El-Mir, MY
    Nogueira, V
    Fontaine, E
    Avéret, N
    Rigoulet, M
    Leverve, X
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) : 223 - 228
  • [9] Fernandez CA, 1996, J MASS SPECTROM, V31, P255, DOI 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO
  • [10] 2-3