A Dimension-reduced Pressure Solver for Liquid Simulations

被引:18
作者
Ando, Ryoichi [1 ]
Thuerey, Nils [2 ]
Wojtan, Chris [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
[2] Tech Univ Munich, D-80290 Munich, Germany
关键词
D O I
10.1111/cgf.12576
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.
引用
收藏
页码:473 / 480
页数:8
相关论文
共 28 条
  • [1] [Anonymous], 2010, Proceedings of Eurographics/ ACM SIGGRAPH Symposium on Computer Ani
  • [2] Batty C, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1276377.1276502, 10.1145/1239451.1239551]
  • [3] BOJSEN-HANSEN M., 2013, ACM T GRAPHIC, V32, P68
  • [4] BRIDSON R., 2008, FLUID SIMULATION FOR
  • [5] Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid
    Chentanez, Nuttapong
    Mueller, Matthias
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (04):
  • [6] IISPH-FLIP for incompressible fluids
    Cornelis, Jens
    Ihmsen, Markus
    Peer, Andreas
    Teschner, Matthias
    [J]. COMPUTER GRAPHICS FORUM, 2014, 33 (02) : 255 - 262
  • [7] Fluid Simulation Using Laplacian Eigenfunctions
    De Witt, Tyler
    Lessig, Christian
    Fiume, Eugene
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (01):
  • [8] Detailed Water with Coarse Grids: Combining Surface Meshes and Adaptive Discontinuous Galerkin
    Edwards, Essex
    Bridson, Robert
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04):
  • [9] FERSTL F., 2013, IEEE T VIS COMPUT GR
  • [10] GERSZEWSKI D., 2013, P MOT GAM ACM, P201