The Impact of Genetic Architecture on Genome-Wide Evaluation Methods

被引:604
作者
Daetwyler, Hans D. [1 ,2 ,3 ]
Pong-Wong, Ricardo [1 ,2 ]
Villanueva, Beatriz [4 ,5 ]
Woolliams, John A. [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Roslin EH25 9PS, Midlothian, Scotland
[2] Univ Edinburgh, Royal Dick Sch Vet Studies, Roslin EH25 9PS, Midlothian, Scotland
[3] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AH Wageningen, Netherlands
[4] Scottish Agr Coll, Edinburgh EH9 3JG, Midlothian, Scotland
[5] Inst Nacl Invest & Tecnol Agr & Alimentaria, Dept Mejora Genet Anim, Madrid 28040, Spain
基金
英国生物技术与生命科学研究理事会;
关键词
BREEDING VALUES; LINKAGE DISEQUILIBRIUM; SELECTION; PREDICTION; ACCURACY; INFORMATION; ALGORITHM; VARIANCE; MODELS; LASSO;
D O I
10.1534/genetics.110.116855
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid increase in high-throughput single-nucleotide polymorphism data has led to a great interest in applying genome-wide evaluation methods to identify an individual's genetic merit. Genome-wide evaluation combines statistical methods with genomic data to predict genetic values for complex traits. Considerable uncertainty currently exists in determining which genome-wide evaluation method is the most appropriate. We hypothesize that genome-wide methods deal differently with the genetic architecture of quantitative traits and genomes. A genomic linear method (GBLUP), and a genomic nonlinear Bayesian variable selection method (BayesB) are compared using stochastic simulation across three effective population sizes and a wide range of numbers of quantitative trait loci (N-QTL). GBLUP had a constant accuracy, for a given heritability and sample size, regardless of NQTL. BayesB had a higher accuracy than GBLUP when N-QTL was low, but this advantage diminished as N-QTL increased and when N-QTL became large, GBLUP slightly outperformed BayesB. In addition, deterministic equations are extended to predict the accuracy of both methods and to estimate the number of independent chromosome segments (Me) and N-QTL. The predictions of accuracy and estimates of Me and N-QTL were generally in good agreement with results from simulated data. We conclude that the relative accuracy of GBLUP and BayesB for a given number of records and heritability are highly dependent on Me, which is a property of the target genome, as well as the architecture of the trait (N-QTL).
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 43 条
[1]  
[Anonymous], BMC P S1
[2]   Inbreeding in genome-wide selection [J].
Daetwyler, H. D. ;
Villanueva, B. ;
Bijma, P. ;
Woolliams, J. A. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :369-376
[3]   Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach [J].
Daetwyler, Hans D. ;
Villanueva, Beatriz ;
Woolliams, John A. .
PLOS ONE, 2008, 3 (10)
[4]   Prediction of response to marker-assisted and genomic selection using selection index theory [J].
Dekkers, J. C. M. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :331-341
[5]  
Falconer D.S., 1996, Quantitative Genetics
[6]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3
[7]   The structure of haplotype blocks in the human genome [J].
Gabriel, SB ;
Schaffner, SF ;
Nguyen, H ;
Moore, JM ;
Roy, J ;
Blumenstiel, B ;
Higgins, J ;
DeFelice, M ;
Lochner, A ;
Faggart, M ;
Liu-Cordero, SN ;
Rotimi, C ;
Adeyemo, A ;
Cooper, R ;
Ward, R ;
Lander, ES ;
Daly, MJ ;
Altshuler, D .
SCIENCE, 2002, 296 (5576) :2225-2229
[8]  
GEYER CJ, 1992, J R STAT SOC B, V54, P657
[9]   Additive Genetic Variability and the Bayesian Alphabet [J].
Gianola, Daniel ;
de los Campos, Gustavo ;
Hill, William G. ;
Manfredi, Eduardo ;
Fernando, Rohan .
GENETICS, 2009, 183 (01) :347-363
[10]   Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models [J].
Gilmour, AR ;
Thompson, R ;
Cullis, BR .
BIOMETRICS, 1995, 51 (04) :1440-1450