Complete positivity of nonlinear evolution: A case study

被引:26
作者
Czachor, M
Kuna, M
机构
[1] Gdansk Tech Univ, Wydzial Fiz Tech & Matemat Stosowanej, PL-80952 Gdansk, Poland
[2] Tech Univ Clausthal, Arnold Sommerfeld Inst Math Phys, D-38678 Clausthal Zellerfeld, Germany
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 01期
关键词
D O I
10.1103/PhysRevA.58.128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Simple Hartree-type equations lead to dynamics of a subsystem that is not completely positive in the sense accepted in mathematical literature. In the linear case this would imply that negative probabilities have to appear for some system that contains the subsystem in question. In the nonlinear case this does not happen because the mathematical definition is physically unfitting as shown in a concrete example.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 51 条
[1]   NONRELATIVISTIC QUANTUM-MECHANICS AS A NONCOMMUTATIVE MARKOV PROCESS [J].
ACCARDI, L .
ADVANCES IN MATHEMATICS, 1976, 20 (03) :329-366
[2]  
AHARONOV Y, QUANTPH9803018
[3]   ON A GENERAL CHARACTERIZATION OF NONLINEAR QUANTUM DYNAMIC MAPS [J].
ALICKI, R ;
MAJEWSKI, WA .
PHYSICS LETTERS A, 1990, 148 (1-2) :69-71
[4]  
Ando T., 1986, ASPECTS POSITIVITY F
[5]  
ARVESON W, 1987, CONT MATH, V62, P282
[6]   Testing complete positivity [J].
Benatti, F ;
Floreanini, R .
MODERN PHYSICS LETTERS A, 1997, 12 (20) :1465-1472
[7]   Completely positive dynamical maps and the neutral kaon system [J].
Benatti, F ;
Floreanini, R .
NUCLEAR PHYSICS B, 1997, 488 (1-2) :335-363
[8]   Experimental limits on complete positivity from the K-(K)over-bar system [J].
Benatti, F ;
Floreanini, R .
PHYSICS LETTERS B, 1997, 401 (3-4) :337-346
[9]   Complete positivity and the K-(K)over-bar system [J].
Benatti, F ;
Floreanini, R .
PHYSICS LETTERS B, 1996, 389 (01) :100-106
[10]   QUANTUM-MECHANICS AS A GENERALIZATION OF NAMBU DYNAMICS TO THE WEYL-WIGNER FORMALISM [J].
BIALYNICKIBIRULA, I ;
MORRISON, PJ .
PHYSICS LETTERS A, 1991, 158 (09) :453-457