LEA proteins prevent protein aggregation due to water stress

被引:566
作者
Goyal, K [1 ]
Walton, LJ [1 ]
Tunnacliffe, A [1 ]
机构
[1] Univ Cambridge, Inst Biotechnol, Cambridge CB2 1QT, England
关键词
aggregation; anhydrobiosis; desiccation tolerance; late embryogenesis abundant (LEA) protein; nematode; water stress;
D O I
10.1042/BJ20041931
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LEA (late embryogenesis abundant) proteins in both plants and animals are associated with tolerance to water stress resulting from desiccation and cold shock. However, although various functions of LEA proteins have been proposed, their precise role has not been defined. Recent bioinformatics studies suggest that LEA proteins might behave as molecular chaperones, and the current study was undertaken to test this hypothesis. Recombinant forms of AavLEA1, a group 3 LEA protein from the anhydrobiotic nematode Aphelenchus avenae, and Em, a group I LEA protein from wheat, have been subjected to functional analysis. Heat-stress experiments with citrate synthase, which is susceptible to aggregation at high temperatures, suggest that LEA proteins do not behave as classical molecular chaperones, but they do exhibit a protective, synergistic effect in the presence of the so-called chemical chaperone, trehalose. In contrast, both LEA proteins can independently protect citrate synthase from aggregation due to desiccation and freezing, in keeping with a role in water-stress tolerance; similar results were obtained with lactate dehydrogenase. This is the first evidence of anti-aggregation activity of LEA proteins due to water stress. Again, a synergistic effect of LEA and trehalose was observed, which is significant given that non-reducing disaccharides are known to accumulate during dehydration in plants and nematodes. A model is proposed whereby LEA proteins might act as a novel form of molecular chaperone, or,molecular shield', to help prevent the formation of damaging protein aggregates during water stress.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 46 条
[1]   Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state [J].
Anchordoquy, TJ ;
Carpenter, JF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 332 (02) :231-238
[2]   Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation [J].
Battista, JR ;
Park, MJ ;
McLemore, AE .
CRYOBIOLOGY, 2001, 43 (02) :133-139
[3]   Molecular chaperone-like properties of an unfolded protein, αs-casein [J].
Bhattacharyya, J ;
Das, KP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (22) :15505-15509
[4]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[5]   Anhydrobiosis - Plant desiccation gene found in a nematode [J].
Browne, J ;
Tunnacliffe, A ;
Burnell, A .
NATURE, 2002, 416 (6876) :38-38
[6]   Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae [J].
Browne, JA ;
Dolan, KM ;
Tyson, T ;
Goyal, K ;
Tunnacliffe, A ;
Burnell, AM .
EUKARYOTIC CELL, 2004, 3 (04) :966-975
[7]   Analysis of chaperone function using citrate synthase as nonnative substrate protein [J].
Buchner, J ;
Grallert, H ;
Jakob, U .
MOLECULAR CHAPERONES, 1998, 290 :323-338
[8]   PURIFICATION OF A MAIZE DEHYDRIN [J].
CECCARDI, TL ;
MEYER, NC ;
CLOSE, TJ .
PROTEIN EXPRESSION AND PURIFICATION, 1994, 5 (03) :266-269
[9]   METABOLIC STUDIES OF CRYPTOBIOSIS IN ENCYSTED EMBRYOS OF ARTEMIA SALINA [J].
CLEGG, JS .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY, 1967, 20 (03) :801-&
[10]   A CDNA-BASED COMPARISON OF DEHYDRATION-INDUCED PROTEINS (DEHYDRINS) IN BARLEY AND CORN [J].
CLOSE, TJ ;
KORTT, AA ;
CHANDLER, PM .
PLANT MOLECULAR BIOLOGY, 1989, 13 (01) :95-108