Worst-case quadratic loss bounds for prediction using linear functions and gradient descent

被引:97
作者
CesaBianchi, N
Long, PM
Warmuth, MK
机构
[1] DUKE UNIV, DEPT COMP SCI, DURHAM, NC 27708 USA
[2] UNIV CALIF SANTA CRUZ, DEPT COMP SCI, SANTA CRUZ, CA 95064 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1996年 / 7卷 / 03期
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
D O I
10.1109/72.501719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the performance of gradient descent (GD) when applied to the problem of on-line linear prediction in arbitrary inner product spaces, We prove worst-case bounds on the sum of the squared prediction errors under various assumptions concerning the amount of a priori information about the sequence to predict, The algorithms we use are variants and extensions of on-line GD, Whereas our algorithms always predict using linear functions as hypotheses, none of our results requires the data to be linearly related. In fact, the bounds proved on the total prediction loss are typically expressed as a function of the total loss of the best fixed linear predictor with bounded norm, All the upper bounds are tight to within constants, Matching lower bounds are provided in some cases. Finally, we apply our results to the problem of on-line prediction for classes of smooth functions.
引用
收藏
页码:604 / 619
页数:16
相关论文
共 30 条
[1]  
Angluin D., 1988, Machine Learning, V2, P319, DOI 10.1007/BF00116828
[2]  
[Anonymous], ADAPTIVE FILTER THEO, DOI DOI 10.1109/ISCAS.2017.8050871
[3]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[4]  
CESABIANCHI N, 1993, P 25 ACM S THEOR COM
[5]   STATISTICAL-THEORY - THE PREQUENTIAL APPROACH [J].
DAWID, AP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1984, 147 :278-292
[6]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[7]  
Faber V., 1991, Fundamenta Informaticae, V15, P145
[8]   UNIVERSAL PREDICTION OF INDIVIDUAL SEQUENCES [J].
FEDER, M ;
MERHAV, N ;
GUTMAN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) :1258-1270
[9]  
Golub G.H., 1990, MATRIX COMPUTATIONS
[10]  
Hardle W., 1991, Smoothing Techniques, DOI DOI 10.1007/978-1-4612-4432-5