Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients

被引:468
作者
Tripathi, Praveen Kumar [1 ]
Bandyopadhyay, Sanghamitra [1 ]
Pal, Sankar Kumar [1 ]
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
关键词
multi-objective optimization; pareto dominance; Particle Swarm Optimization;
D O I
10.1016/j.ins.2007.06.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization (MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. TV-MOPSO has been compared with some recently developed multi-objective PSO techniques and evolutionary algorithms for I I function optimization problems, using different performance measures. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:5033 / 5049
页数:17
相关论文
共 37 条
[1]  
[Anonymous], 2001, EVOLUTIONARY ALGORIT
[2]   Multiobjective GAs, quantitative indices, and pattern classification [J].
Bandyopadhyay, S ;
Pal, SK ;
Aruna, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (05) :2088-2099
[3]  
Carlisle A, 2002, TSI PRESS S, V13, P265, DOI 10.1109/WAC.2002.1049555
[4]  
Carlisle A, 2000, IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, P429
[5]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[6]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[7]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[8]  
Corne D. W., 2001, P 3 ANN C GENETIC EV, P283
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
Deb K., 2001, 112 TIK I TECHN INF