Efficiently approximating the minimum-volume bounding box of a point set in three dimensions

被引:164
作者
Barequet, G [1 ]
Har-Peled, S
机构
[1] Technion Israel Inst Technol, Fac Comp Sci, IL-32000 Haifa, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Johns Hopkins Univ, Dept Comp Sci, Ctr Geometr Comp, Baltimore, MD 21218 USA
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2001年 / 38卷 / 01期
关键词
approximation; bounding box;
D O I
10.1006/jagm.2000.1127
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an efficient O(n + 1/epsilon (4.5))-time algorithm for computing a (1 + epsilon)-approximation of the minimum-volume bounding box of n points in R-3. We also present a simpler algorithm whose running time is O(n log n + n/epsilon (3)). We give some experimental results with implementations of various variants of the second algorithm. (C) 2001 Academic Press.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 21 条
[1]   Approximating shortest paths on a convex polytope in three dimensions [J].
Agarwal, PK ;
HarPeled, S ;
Sharir, M ;
Varadarajan, KR .
JOURNAL OF THE ACM, 1997, 44 (04) :567-584
[2]  
ANDREWS GE, 1963, T AM MATH SOC, V106, P270
[3]  
Barequet G, 1996, COMPUT GRAPH FORUM, V15, pC387, DOI 10.1111/1467-8659.1530387
[4]  
BECKMANN N, 1990, ACM SIGMOD, P322, DOI DOI 10.1145/93597.98741
[5]  
BESPAMYATNIKH S, 1997, P 9 CAN C COMP GEOM, P33
[6]   Output-sensitive results on convex hulls, extreme points, and related problems [J].
Chan, TM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 16 (04) :369-387
[7]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[8]  
Dudley R. M., 1974, Journal of Approximation Theory, V10, P227, DOI 10.1016/0021-9045(74)90120-8
[9]   APPROXIMATING THE DIAMETER OF A SET OF POINTS IN THE EUCLIDEAN-SPACE [J].
EGECIOGLU, O ;
KALANTARI, B .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :205-211
[10]  
FALOUTSOS C, 1995, ACM SIGMOD RECORD, V24, P163