A genetic approach to detecting clusters in point data sets

被引:32
作者
Conley, J [1 ]
Gahegan, M [1 ]
Macgill, J [1 ]
机构
[1] Penn State Univ, Dept Geog, GeoVISTA Ctr, University Pk, PA 16802 USA
关键词
D O I
10.1111/j.1538-4632.2005.00617.x
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Spatial analysis techniques are widely used throughout geography. However, as the size of geographic data sets increases exponentially, limitations to the traditional methods of spatial analysis become apparent. To overcome some of these limitations, many algorithms for exploratory spatial analysis have been developed. This article presents both a new cluster detection method based on a genetic algorithm, and Programs for Cluster Detection, a toolkit application containing the new method as well as implementations of three established methods: Openshaw's Geographical Analysis Machine (GAM), case point-centered searching (proposed by Besag and Newell), and randomized CAM (proposed by Fotheringham and Zhan). We compare the effectiveness of cluster detection and the runtime performance of these four methods and Kulldorf's spatial scan statistic on a synthetic point data set simulating incidence of a rare disease among a spatially variable background population. The proposed method has faster average running times than the other methods and significantly reduces overreporting of the underlying clusters, thus reducing the user's postprocessing burden. Therefore, the proposed method improves upon previous methods for automated cluster detection. The results of our method are also compared with those of Map Explorer (MAPEX), a previous attempt to develop a genetic algorithm for cluster detection. The results of these comparisons indicate that our method overcomes many of the problems faced by MAPEX, thus, we believe, establishing that genetic algorithms can indeed offer a viable approach to cluster detection.
引用
收藏
页码:286 / 314
页数:29
相关论文
共 65 条
[1]   Leukemia clusters in upstate New York: how adding covariates changes the story [J].
Ahrens, C ;
Altman, N ;
Casella, G ;
Eaton, M ;
Hwang, JTG ;
Staudenmayer, J ;
Stefanescu, C .
ENVIRONMETRICS, 2001, 12 (07) :659-672
[2]   Some methods for investigating spatial clustering, with epidemiological applications [J].
Anderson, NH ;
Titterington, DM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1997, 160 :87-105
[3]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[4]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[5]   THE DETECTION OF CLUSTERS IN RARE DISEASES [J].
BESAG, J ;
NEWELL, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1991, 154 :143-155
[6]  
BRUNSDON C, 1998, STATISTICIAN, V47, P431
[7]   GAUSSIAN PARSIMONIOUS CLUSTERING MODELS [J].
CELEUX, G ;
GOVAERT, G .
PATTERN RECOGNITION, 1995, 28 (05) :781-793
[8]   DISTANCE TO NEAREST NEIGHBOR AS A MEASURE OF SPATIAL RELATIONSHIPS IN POPULATIONS [J].
CLARK, PJ ;
EVANS, FC .
ECOLOGY, 1954, 35 (04) :445-453
[10]  
DAVID FN, 1966, BRIT J PREV SOC MED, V20, P44