Benchmark dose risk assessment for formaldehyde using airflow modeling and a single-compartment, DNA-protein cross-link dosimetry model to estimate human equivalent doses

被引:42
作者
Schlosser, PM
Lilly, PD
Conolly, RB
Janszen, DB
机构
[1] CIIT Ctr Hlth Res, Res Triangle Pk, NC 27709 USA
[2] Boehringer Ingelheim Pharmaceut Inc, Ridgefield, CT 06877 USA
[3] Wyeth Ayerst Res, Collegeville, PA 19426 USA
关键词
D O I
10.1111/1539-6924.00328
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde was conducted at the CIIT Centers for Health Research, in collaboration with investigators from Toxicological Excellence in Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA) in 1999. Two methods for dose-response assessment were used: a full biologically based modeling approach and a statistically oriented analysis by benchmark dose (BMD) method. This article presents the later approach, the purpose of which is to combine BMD and pharmacokinetic modeling to estimate human cancer risks from formaldehyde exposure. BMD analysis was used to identify points of departure (exposure levels) for low-dose extrapolation in rats for both tumor and the cell proliferation endpoints. The benchmark concentrations for induced cell proliferation were lower than for tumors. These concentrations were extrapolated to humans using two mechanistic models. One model used computational fluid dynamics (CFD) alone to determine rates of delivery of inhaled formaldehyde to the nasal lining. The second model combined the CFD method with a pharmacokinetic model to predict tissue dose with formaldehyde-induced DNA-protein cross-links (DPX) as a dose metric. Both extrapolation methods gave similar results, and the predicted cancer risk in humans at low exposure levels was found to be similar to that from a risk assessment conducted by the U.S. EPA in 1991. Use of the mechanistically based extrapolation models lends greater certainty to these risk estimates than previous approaches and also identifies the uncertainty in the measured dose-response relationship for cell proliferation at low exposure levels, the dose-response relationship for DPX in monkeys, and the choice between linear and nonlinear methods of extrapolation as key remaining sources of uncertainty.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1996, FED REGISTER
[2]   COVALENT BINDING OF INHALED FORMALDEHYDE TO DNA IN THE NASAL-MUCOSA OF FISCHER 344 RATS - ANALYSIS OF FORMALDEHYDE AND DNA BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY AND PROVISIONAL PHARMACOKINETIC INTERPRETATION [J].
CASANOVA, M ;
DEYO, DF ;
HECK, HD .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1989, 12 (03) :397-417
[3]   COVALENT BINDING OF INHALED FORMALDEHYDE TO DNA IN THE RESPIRATORY-TRACT OF RHESUS-MONKEYS - PHARMACOKINETICS, RAT-TO-MONKEY INTERSPECIES SCALING, AND EXTRAPOLATION TO MAN [J].
CASANOVA, M ;
MORGAN, KT ;
STEINHAGEN, WH ;
EVERITT, JI ;
POPP, JA ;
HECK, HD .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1991, 17 (02) :409-428
[4]   OXIDATION OF FORMALDEHYDE AND ACETALDEHYDE BY NAD+-DEPENDENT DEHYDROGENASES IN RAT NASAL MUCOSAL HOMOGENATES [J].
CASANOVASCHMITZ, M ;
DAVID, RM ;
HECK, HD .
BIOCHEMICAL PHARMACOLOGY, 1984, 33 (07) :1137-1142
[5]  
Chemical Industry Institute of Toxicology (CIIT), 1999, FORM HAZ CHAR DOS RE
[6]   Simulation modeling of the tissue disposition of formaldehyde to predict nasal DNA-protein cross-links in fischer 344 rats, rhesus monkeys, and humans [J].
Conolly, RB ;
Lilly, PD ;
Kimbell, JS .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2000, 108 :919-924
[7]   A NEW METHOD FOR DETERMINING ALLOWABLE DAILY INTAKES [J].
CRUMP, KS .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1984, 4 (05) :854-871
[8]   Pharmacodynamics of formaldehyde: Applications of a model for the arrest of DNA replication by DNA-protein cross-links [J].
Heck, HD ;
Casanova, M .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1999, 160 (01) :86-100
[9]  
Hubal EAC, 1997, TOXICOL APPL PHARM, V143, P47
[10]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481