Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes

被引:123
作者
Reginato, MJ
Mills, KR
Becker, EBE
Lynch, DK
Bonni, A
Muthuswamy, SK
Brugge, JS
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.25.11.4591-4601.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epithelial cells organize into cyst-like structures that contain a spherical monolayer of cells that enclose a central lumen. Using a three-dimensional basement membrane culture model in which mammary epithelial cells form hollow, acinus-like structures, we previously demonstrated that lumen formation is achieved, in part, through apoptosis of centrally localized cells. We demonstrate that the proapoptotic protein Bim may selectively trigger apoptosis of the centrally localized acinar cells, leading to temporally controlled lumen formation. Bim is not detectable during early stages of three-dimensional mammary acinar morphogenesis and is then highly upregulated in all cells of acini, coincident with detection of apoptosis in the centrally localized acinar cells. Inhibition of Bim expression by RNA interference transiently blocks luminal apoptosis and delays lumen formation. Oncogenes that induce acinar luminal filling, such as ErbB2 and v-Src, suppress expression of Bim through a pathway dependent on Erk-mitogen-activated protein kinase; however, HPV 16 E7, an oncogene that stimulates cell proliferation but not luminal filling, is unable to reduce Bim expression. Thus, Bim is a critical regulator of luminal apoptosis during mammary acinar morphogenesis in vitro and may be an important target of oncogenes that disrupt glandular epithelial architecture.
引用
收藏
页码:4591 / 4601
页数:11
相关论文
共 43 条
[1]   Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation [J].
Biswas, SC ;
Greene, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49511-49516
[2]  
Blatchford DR, 1999, J CELL PHYSIOL, V181, P304, DOI 10.1002/(SICI)1097-4652(199911)181:2<304::AID-JCP12>3.0.CO
[3]  
2-5
[4]   Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist bim [J].
Bouillet, P ;
Cory, S ;
Zhang, LC ;
Strasser, A ;
Adams, JM .
DEVELOPMENTAL CELL, 2001, 1 (05) :645-653
[5]   BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis [J].
Cheng, EHYA ;
Wei, MC ;
Weiler, S ;
Flavell, RA ;
Mak, TW ;
Lindsten, T ;
Korsmeyer, SJ .
MOLECULAR CELL, 2001, 8 (03) :705-711
[6]   SIGNALS FOR DEATH AND SURVIVAL - A 2-STEP MECHANISM FOR CAVITATION IN THE VERTEBRATE EMBRYO [J].
COUCOUVANIS, E ;
MARTIN, GR .
CELL, 1995, 83 (02) :279-287
[7]  
Coucouvanis E, 1999, DEVELOPMENT, V126, P535
[8]   Cell death: Critical control points [J].
Danial, NN ;
Korsmeyer, SJ .
CELL, 2004, 116 (02) :205-219
[9]   Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner [J].
Debnath, J ;
Walker, SJ ;
Brugge, JS .
JOURNAL OF CELL BIOLOGY, 2003, 163 (02) :315-326
[10]   The role of apoptosis in creating and maintaining luminal space with normal and oncogene-expressing mammary acini [J].
Debnath, J ;
Mills, KR ;
Collins, NL ;
Reginato, MJ ;
Muthuswamy, SK ;
Brugge, JS .
CELL, 2002, 111 (01) :29-40