An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B), a mycolyl transferase

被引:92
作者
Anderson, DH
Harth, G
Horwitz, MA
Eisenberg, D
机构
[1] Univ Calif Los Angeles, Lab Struct Biol & Mol Med, US DOE, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
Mycobacterium tuberculosis; 30 kDa major secretory protein; antigen; 85B; mycolyl transferase; drug design;
D O I
10.1006/jmbi.2001.4461
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B) is the most abundant protein exported by M. tuberculosis, as well as a potent immunoprotective antigen and a leading drug target. A mycolyl transferase of 285 residues, it is closely related to two other mycolyl transferases, each of molecular mass 32 kDa: antigen 85A and antigen 85C. All three catalyze transfer of the fatty acid mycolate from one trehalose monomycolate to another, resulting in trehalose dimycolate and free trehalose, thus helping to build the bacterial cell wall. We have determined two crystal structures of M. tuberculosis antigen 85B (ag85B), initially by molecular replacement using antigen 85C as a probe. The apo ag85B model is refined against 1.8 Angstrom data, to an R-factor of 0.196 (R-free is 0.276), and includes all residues except the N-terminal Phe. The active site immobilizes a molecule of the cryoprotectant 2-methyl-2,4-pentanediol. Crystal growth with addition of trehalose resulted in a second ag85B crystal structure (1.9 Angstrom resolution; R-factor is 0.195; R-free is 0.285). Trehalose binds in two sites at opposite ends of the active-site cleft. In our proposed mechanism model, the trehalose at the active site Ser126 represents the trehalose liberated by temporary esterification of Ser126, while the other trehalose represents the incoming trehalose monomycolate just prior to swinging over to the first trehalose site to displace the mycolate from its serine ester. Our proposed interfacial mechanism minimizes aqueous exposure of the apolar mycolates. Based on the trehalose-bound structure, we suggest a new class of antituberculous drugs, made by connecting two trehalose molecules by an amphipathic linker. (C) 2001 Academic Press.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 39 条
[1]   THE DEVELOPMENT OF VERSION-3 AND VERSION-4 OF THE CAMBRIDGE STRUCTURAL DATABASE SYSTEM [J].
ALLEN, FH ;
DAVIES, JE ;
GALLOY, JJ ;
JOHNSON, O ;
KENNARD, O ;
MACRAE, CF ;
MITCHELL, EM ;
MITCHELL, GF ;
SMITH, JM ;
WATSON, DG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1991, 31 (02) :187-204
[2]  
[Anonymous], USE ANTIBIOTICS
[3]   Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv:: Effect on growth in culture and in macrophages [J].
Armitige, LY ;
Jagannath, C ;
Wanger, AR ;
Norris, SJ .
INFECTION AND IMMUNITY, 2000, 68 (02) :767-778
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis [J].
Belisle, JT ;
Vissa, VD ;
Sievert, T ;
Takayama, K ;
Brennan, PJ ;
Besra, GS .
SCIENCE, 1997, 276 (5317) :1420-1422
[6]   THE ENVELOPE OF MYCOBACTERIA [J].
BRENNAN, PJ ;
NIKAIDO, H .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :29-63
[7]   Free R value: Cross-validation in crystallography [J].
Brunger, AT .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :366-396
[8]   Response surface methods for optimizing and improving reproducibility of crystal growth [J].
Carter, CW .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :74-99
[9]   Global burden of tuberculosis - Estimated incidence, prevalence, and mortality by country [J].
Dye, C ;
Scheele, S ;
Dolin, P ;
Pathania, V ;
Raviglione, RC .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1999, 282 (07) :677-686
[10]   Interfacial binding of secreted phospholipases A2:: more than electrostatics and a major pole for tryptophan [J].
Gelb, MH ;
Cho, WH ;
Wilton, DC .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1999, 9 (04) :428-432