Renormalisation of σ4-theory on noncommutative R4 stop in the matrix base

被引:325
作者
Grosse, H
Wulkenhaar, R
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
关键词
D O I
10.1007/s00220-004-1285-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the real four-dimensional Euclidean noncommutative phi(4)-model is renormalisable to all orders in perturbation theory. Compared with the commutative case, the bare action of relevant and marginal couplings contains necessarily an additional term: an harmonic oscillator potential for the free scalar field action. This entails a modified dispersion relation for the free theory, which becomes important at large distances (UV/IR-entanglement). The renormalisation proof relies on flow equations for the expansion coefficients of the effective action with respect to scalar fields written in the matrix base of the noncommutative R-4. The renormalisation flow depends on the topology of ribbon graphs and on the asymptotic and local behaviour of the propagator governed by orthogonal Meixner polynomials.
引用
收藏
页码:305 / 374
页数:70
相关论文
共 25 条
[1]  
BLAU M, 2002, JHEP, V201
[2]  
Chepelev I, 2000, J HIGH ENERGY PHYS
[3]  
Chepelev I, 2001, J HIGH ENERGY PHYS
[4]   Moyal planes are spectral triples [J].
Gayral, V ;
Gracia-Bondía, JM ;
Iochum, B ;
Schücker, T ;
Várilly, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (03) :569-623
[5]   ALGEBRAS OF DISTRIBUTIONS SUITABLE FOR PHASE-SPACE QUANTUM-MECHANICS .1. [J].
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :869-879
[6]  
GRADSHTEYN IS, 2000, TABLES SERIES PRODUC
[7]  
Grosse H, 2004, EUR PHYS J C, V35, P277, DOI 10.1140/epjc/s2004-01853-x
[8]  
Grosse H, 2003, J HIGH ENERGY PHYS
[9]   Power-counting theorem for non-local matrix models and renormalisation [J].
Grosse, H ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (01) :91-127
[10]  
GROSSE H, 2004, IN PRESS LETT MATH P