A differential game approach to formation control

被引:126
作者
Gu, Dongbing [1 ]
机构
[1] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
基金
英国工程与自然科学研究理事会;
关键词
formation control; linear-quadratic differential game; Nash equilibrium;
D O I
10.1109/TCST.2007.899732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a differential game approach to formation control of mobile robots. The formation control is formulated as a linear-quadratic Nash differential game through the use of graph theory. Finite horizon cost function is discussed under the open-loop information structure. An open-loop Nash equilibrium solution is investigated by establishing existence and stability conditions of the solutions of coupled (asymmetrical) Riccati differential equations. Based on the finite horizon open-loop Nash equilibrium solution, a receding horizon approach is adopted to synthesize a state-feedback controller for the formation control. Mobile robots with double integrator dynamics are used in the formation control simulation. Simulation results are provided to justify the models and solutions.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 27 条
[1]   Behavior-based formation control for multirobot teams [J].
Balch, T ;
Arkin, RC .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06) :926-939
[2]  
Basar T., 1995, Dynamic Noncooperative Game Theory
[3]   Distributed model predictive control [J].
Camponogara, Eduardo ;
Jia, Dong ;
Krogh, Bruce H. ;
Talukdar, Sarosh .
IEEE Control Systems Magazine, 2002, 22 (01) :44-52
[4]   Game-theoretic modeling and control of a military air operation [J].
Cruz, JB ;
Simaan, MA ;
Gacic, A ;
Jiang, HH ;
Letellier, B ;
Li, M ;
Liu, Y .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2001, 37 (04) :1393-1405
[5]   A vision-based formation control framework [J].
Das, AK ;
Fierro, R ;
Kumar, V ;
Ostrowski, JP ;
Spletzer, J ;
Taylor, CJ .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (05) :813-825
[6]   Modeling and control of formations of nonholonomic mobile robots [J].
Desai, JP ;
Ostrowski, JP ;
Kumar, V .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :905-908
[7]   Distributed receding horizon control for multi-vehicle formation stabilization [J].
Dunbar, WB ;
Murray, RM .
AUTOMATICA, 2006, 42 (04) :549-558
[8]  
Engwerda J., 2005, LQ DYNAMIC OPTIMIZAT
[9]  
Fierro R, 2001, IEEE INT CONF ROBOT, P157, DOI 10.1109/ROBOT.2001.932546
[10]   Autonomous formation flight [J].
Giulietti, Fabrizio ;
Pollini, Lorenzo ;
Innocenti, Mario .
IEEE Control Systems Magazine, 2000, 20 (06) :34-44