Cloning and functional characterization of mammalian homologues of the COPII component Sec23

被引:96
作者
Paccaud, JP
Reith, W
Carpentier, JL
Ravazzola, M
Amherdt, M
Schekman, R
Orci, L
机构
[1] UNIV GENEVA, MED CTR, DEPT MICROBIOL, CH-1211 GENEVA 4, SWITZERLAND
[2] UNIV CALIF BERKELEY, HOWARD HUGHES MED INST, DIV BIOCHEM & MOL BIOL, BERKELEY, CA 94720 USA
关键词
D O I
10.1091/mbc.7.10.1535
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We screened a human cDNA library with a probe derived from a partial SEC23 mouse homologue and isolated two different cDNA clones (hSec23A and hSec23B) encoding proteins of a predicted molecular mass of 85 kDa. hSec23Ap and hSec23Bp were 85% identical and shared 48% identity with the yeast Sec23p. Affinity-purified anti-hSec23A recognized a protein of similar to 85 kDa on immunoblots of human, mouse, and rat cell extracts but did not recognize yeast Sec23p. Cytosolic hSec23Ap migrated with an apparent molecular weight of 350 kDa on a gel filtration column, suggesting that it is part of a protein complex. By immunoelectron microscopy, hSec23Ap was found essentially in the ribosome-free transitional face of the endoplasmic reticulum (ER) and associated vesicles. hSec23Ap is a functional homologue of the yeast Sec23p as the hSec23A isoform complemented the temperature sensitivity of the Saccharomyces cerevisiae sec23-1 mutation at a restrictive temperature of 34 degrees C. RNase protection assays indicated that both hSec23 isoforms are coexpressed in various human tissues, although at a variable ratio. Our data demonstrate that hSec23Ap is the functional human counterpart of the yeast COPII component Sec23p and suggest that it plays a similar role in mammalian protein export from the ER. The exact function of hSec23Bp remains to be determined.
引用
收藏
页码:1535 / 1546
页数:12
相关论文
共 40 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   SEQUENTIAL COUPLING BETWEEN COPII AND COPI VESICLE COATS IN ENDOPLASMIC-RETICULUM TO GOLGI TRANSPORT [J].
ARIDOR, M ;
BANNYKH, SI ;
ROWE, T ;
BALCH, WE .
JOURNAL OF CELL BIOLOGY, 1995, 131 (04) :875-893
[3]  
Ausubel F.M., 1992, SHORT PROTOCOLS MOL, V2nd
[4]   RECONSTITUTION OF THE TRANSPORT OF PROTEIN BETWEEN SUCCESSIVE COMPARTMENTS OF THE GOLGI MEASURED BY THE COUPLED INCORPORATION OF N-ACETYLGLUCOSAMINE [J].
BALCH, WE ;
DUNPHY, WG ;
BRAELL, WA ;
ROTHMAN, JE .
CELL, 1984, 39 (02) :405-416
[5]  
BARLOWE C, 1993, J BIOL CHEM, V268, P873
[6]   COPII - A MEMBRANE COAT FORMED BY SEC PROTEINS THAT DRIVE VESICLE BUDDING FROM THE ENDOPLASMIC-RETICULUM [J].
BARLOWE, C ;
ORCI, L ;
YEUNG, T ;
HOSOBUCHI, M ;
HAMAMOTO, S ;
SALAMA, N ;
REXACH, MF ;
RAVAZZOLA, M ;
AMHERDT, M ;
SCHEKMAN, R .
CELL, 1994, 77 (06) :895-907
[7]   SEC12 ENCODES A GUANINE-NUCLEOTIDE-EXCHANGE FACTOR ESSENTIAL FOR TRANSPORT VESICLE BUDDING FROM THE ER [J].
BARLOWE, C ;
SCHEKMAN, R .
NATURE, 1993, 365 (6444) :347-349
[8]   COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast [J].
Bednarek, SY ;
Ravazzola, M ;
Hosobuchi, M ;
Amherdt, M ;
Perrelet, A ;
Schekman, R ;
Orci, L .
CELL, 1995, 83 (07) :1183-1196
[9]  
DASCHER C, 1994, J BIOL CHEM, V269, P1437
[10]   FISSION YEAST AND A PLANT HAVE FUNCTIONAL HOMOLOGS OF THE SAR1-PROTEIN AND SEC12-PROTEIN INVOLVED IN ER TO GOLGI TRAFFIC IN BUDDING YEAST [J].
DENFERT, C ;
GENSSE, M ;
GAILLARDIN, C .
EMBO JOURNAL, 1992, 11 (11) :4205-4211