Free energy simulations: Use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence

被引:88
作者
Yang, W
Bitetti-Putzer, R
Karplus, M [1 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Univ Strasbourg 1, ISIS, Lab Chim Biophys, F-67000 Strasbourg, France
[3] Harvard Univ, Comm Higher Degrees Biophys, Cambridge, MA 02138 USA
关键词
D O I
10.1063/1.1638996
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method is proposed for improving the accuracy and efficiency of free energy simulations. The essential idea is that the convergence of the relevant measure (e.g., the free energy derivative in thermodynamic integration) is monitored in the reverse direction starting from the last frame of the trajectory, instead of the usual approach, which begins with the first frame and goes in the forward direction. This simple change in the use of the simulation data makes it straightforward to eliminate the contamination of the averages by contributions from the equilibrating region. A statistical criterion is introduced for distinguishing the equilibrated (production) region from the equilibrating region. The proposed method, called reverse cumulative averaging, is illustrated by its application to the well-studied case of the alchemical free energy simulation of ethane to methanol. (C) 2004 American Institute of Physics.
引用
收藏
页码:2618 / 2628
页数:11
相关论文
共 45 条
[1]   Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations [J].
Archontis, G ;
Simonson, T ;
Moras, D ;
Karplus, M .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (05) :823-846
[2]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Generalized ensembles serve to improve the convergence of free energy simulations [J].
Bitetti-Putzer, R ;
Yang, W ;
Karplus, M .
CHEMICAL PHYSICS LETTERS, 2003, 377 (5-6) :633-641
[5]   Transition path sampling: Throwing ropes over rough mountain passes, in the dark [J].
Bolhuis, PG ;
Chandler, D ;
Dellago, C ;
Geissler, PL .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :291-318
[6]   The role of bonded terms in free energy simulations: 1. Theoretical analysis [J].
Boresch, S ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (01) :103-118
[7]   THE MEANING OF COMPONENT ANALYSIS - DECOMPOSITION OF THE FREE-ENERGY IN TERMS OF SPECIFIC INTERACTIONS [J].
BORESCH, S ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 254 (05) :801-807
[8]   FREE-ENERGY SIMULATIONS - THE MEANING OF THE INDIVIDUAL CONTRIBUTIONS FROM A COMPONENT ANALYSIS [J].
BORESCH, S ;
ARCHONTIS, G ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) :25-33
[9]   The role of bonded terms in free energy simulations. 2. Calculation of their influence on free energy differences of solvation [J].
Boresch, S ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (01) :119-136
[10]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217