Thermal unit commitment using binary/real coded artificial bee colony algorithm

被引:109
作者
Chandrasekaran, K. [2 ]
Hemamalini, S. [1 ]
Simon, Sishaj P. [2 ]
Padhy, Narayana Prasad [3 ]
机构
[1] VIT Univ, Madras, Tamil Nadu, India
[2] Natl Inst Technol, Tiruchirappalli, Tamil Nadu, India
[3] Indian Inst Technol, Roorkee, Uttar Pradesh, India
关键词
Unit commitment; Binary artificial bee colony; Economic dispatch; Valve-point effect; Prohibited operating zones; Multiple fuels; ECONOMIC EMISSION DISPATCH; OPTIMIZATION; NETWORK;
D O I
10.1016/j.epsr.2011.09.022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a binary/real coded artificial bee colony (BRABC) algorithm to solve the thermal unit commitment problem (UCP). A novel binary coded ABC with repair strategies is used to obtain a feasible commitment schedule for each generating unit, satisfying spinning reserve and minimum up/down time constraints. Economic dispatch is carried out using real coded ABC for the feasible commitment obtained in each interval. In addition, non-linearities like valve-point effect, prohibited operating zones and multiple fuel options are included in the fuel cost functions. The effectiveness of the proposed algorithm has been tested on a standard ten-unit system, on IEEE 118-bus test system and IEEE RTS 24 bus system. Results obtained show that the proposed binary ABC is efficient in generating feasible schedules. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 45 条
[1]   A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function [J].
Attaviriyanupap, P ;
Kita, H ;
Tanaka, E ;
Hasegawa, J .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2002, 17 (02) :411-416
[2]   Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints [J].
Bai, X. ;
Wei, H. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2009, 3 (02) :182-197
[3]  
Basturk B., 2006, P IEEE SWARM INT S I
[4]   Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II [J].
Basu, M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (02) :140-149
[5]  
Burns RM, 1975, PROCEEDING IEEE POWE, P453
[6]   BRANCH-AND-BOUND SCHEDULING FOR THERMAL GENERATING-UNITS [J].
CHEN, CL ;
WANG, SC .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1993, 8 (02) :184-189
[7]   A BRANCH-AND-BOUND ALGORITHM FOR UNIT COMMITMENT [J].
COHEN, AI ;
YOSHIMURA, M .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1983, 102 (02) :444-451
[8]   A solution to the unit-commitment problem using integer-coded genetic algorithm [J].
Damousis, IG ;
Bakirtzis, AG ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :1165-1172
[9]   THERMAL UNIT COMMITMENT USING GENETIC ALGORITHMS [J].
DASGUPTA, D ;
MCGREGOR, DR .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1994, 141 (05) :459-465
[10]   Improved merit order and augmented Lagrange Hopfield network for unit commitment [J].
Dieu, V. N. ;
Ongsakul, W. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2007, 1 (04) :548-556