Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice

被引:315
作者
Koldamova, R [1 ]
Staufenbiel, M
Lefterov, I
机构
[1] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Environm & Occupat Hlth, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Dept Pharmacol, Pittsburgh, PA 15261 USA
[3] Novartis Inst BioMed Res, CH-4002 Basel, Switzerland
关键词
D O I
10.1074/jbc.M504513200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ABCA1 (ATP-binding cassette transporter A1) is a major regulator of cholesterol efflux and high density lipoprotein (HDL) metabolism. Mutations in human ABCA1 cause severe HDL deficiencies characterized by the virtual absence of apoA-I and HDL and prevalent atherosclerosis. Recently, it has been reported that the lack of ABCA1 causes a significant reduction of apoE protein level in the brain of ABCA1 knock-out (ABCA1(-/-)) mice. ApoE isoforms strongly affect Alzheimer disease (AD) pathology and risk. To determine further the effect of ABCA1 on amyloid deposition, we used APP23 transgenic mice in which the human familial Swedish AD mutant is expressed only in neurons. We demonstrated that the targeted disruption of ABCA1 increases amyloid deposition in APP23 mice, and the effect is manifested by an increased level of A beta immunoreactivity, as well as thioflavine S-positive plaques in brain parenchyma. We found that the lack of ABCA1 also considerably increased the level of cerebral amyloid angiopathy and exacerbated cerebral amyloid angiopathy-related microhemorrhage in APP23/ ABCA1(-/-) mice. Remarkably, the elevation in parenchymal and vascular amyloid in APP23/ABCA1(-/-) mice was accompanied by a dramatic decrease in the level of soluble brain apoE, although insoluble apoE was not changed. The elevation of insoluble A beta fraction in old APP23/ABCA1(-/-) mice, accompanied by a lack of changes in APP processing and soluble beta-amyloid in young APP23/ABCA1(-/-) animals, supports the conclusion that the ABCA1 deficiency increases amyloid deposition. These results suggest that ABCA1 plays a role in the pathogenesis of parenchymal and cerebrovascular amyloid pathology and thus may be considered a therapeutic target in AD.
引用
收藏
页码:43224 / 43235
页数:12
相关论文
共 78 条
[1]  
[Anonymous], HISTOTECHNOLOGY SELF
[2]   Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer's disease [J].
Bales, KR ;
Verina, T ;
Cummins, DJ ;
Du, YS ;
Dodel, TC ;
Saura, J ;
Fishman, CE ;
DeLong, CA ;
Piccardo, P ;
Petegnief, V ;
Ghetti, B ;
Paul, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :15233-15238
[3]   Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition [J].
Bales, KR ;
Verina, T ;
Dodel, RC ;
Du, YS ;
Altstiel, L ;
Bender, M ;
Hyslop, P ;
Johnstone, EM ;
Little, SP ;
Cummins, DJ ;
Piccardo, P ;
Ghetti, B ;
Paul, SM .
NATURE GENETICS, 1997, 17 (03) :263-264
[4]  
Bamberger ME, 2003, J NEUROSCI, V23, P2665
[5]   The current status of Alzheimer's disease genetics: what do we tell the patients? [J].
Bertram, L ;
Tanzi, RE .
PHARMACOLOGICAL RESEARCH, 2004, 50 (04) :385-396
[6]   The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J].
Bodzioch, M ;
Orsó, E ;
Klucken, T ;
Langmann, T ;
Böttcher, L ;
Diederich, W ;
Drobnik, W ;
Barlage, S ;
Büchler, C ;
Porsch-Özcürümez, M ;
Kaminski, WE ;
Hahmann, HW ;
Oette, K ;
Rothe, G ;
Aslanidis, C ;
Lackner, KJ ;
Schmitz, G .
NATURE GENETICS, 1999, 22 (04) :347-351
[7]  
Bornemann KD, 2001, AM J PATHOL, V158, P63, DOI 10.1016/S0002-9440(10)63945-4
[8]   Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease [J].
Brewer, HB ;
Remaley, AT ;
Neufeld, EB ;
Basso, F ;
Joyce, C .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (10) :1755-1760
[9]   Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency [J].
Brooks-Wilson, A ;
Marcil, M ;
Clee, SM ;
Zhang, LH ;
Roomp, K ;
van Dam, M ;
Yu, L ;
Brewer, C ;
Collins, JA ;
Molhuizen, HOF ;
Loubser, O ;
Ouelette, BFF ;
Fichter, K ;
Ashbourne-Excoffon, KJD ;
Sensen, CW ;
Scherer, S ;
Mott, S ;
Denis, M ;
Martindale, D ;
Frohlich, J ;
Morgan, K ;
Koop, B ;
Pimstone, S ;
Kastelein, JJP ;
Genest, J ;
Hayden, MR .
NATURE GENETICS, 1999, 22 (04) :336-345
[10]   Differential expression of cholesterol hydroxylases in Alzheimer's disease [J].
Brown, J ;
Theisler, C ;
Silberman, S ;
Magnuson, D ;
Gottardi-Littell, N ;
Lee, JM ;
Yager, D ;
Crowley, J ;
Sambamurti, K ;
Rahman, MM ;
Reiss, AB ;
Eckman, CB ;
Wolozin, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34674-34681