Methane combustion over supported palladium catalysts I. Reactivity and active phase

被引:131
作者
Yang, SW
Maroto-Valiente, A
Benito-Gonzalez, M
Rodriguez-Ramos, I
Guerrero-Ruiz, A [1 ]
机构
[1] Univ Nacl Educ Distancia, Dept Quim Inorgan & Tecn, Fac Ciencias, Madrid 28040, Spain
[2] CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
palladium; alumina; zirconia; methane combustion; active phase; IR; CO adsorption; microcalorimetry;
D O I
10.1016/S0926-3373(00)00178-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of Al2O3, ZrO2 and ZrO2 stabilized with SiO2 (ZrO2-s) supported palladium catalysts for the methane combustion was studied between 473 and 873 K. The nature of the surface species of palladium catalysts under reaction conditions were detected by FT-IR and microcalorimetry of CO adsorbed. The different behavior of palladium catalysts under reaction conditions is attributed to support effects associated to differences in thermal conductivity and oxygen mobility of supports. Prereduction of the catalysts enhances their activity. Under reaction conditions, the prereduced sample becomes partially oxidized by preferential adsorption/reaction of oxygen both on Pd ( 1 1 1) planes and on the sites that can multibondedly adsorb CO. The reconstruction of the metallic particles and the formation of PdOx (0<x<less than or equal to>1) phase were directly observed by FT-IR and microcalorimetry of adsorbed CO. Combination of different characterization techniques with reaction results suggests that a mixed phase, Pd-0/PdOx, is the most active phase for methane combustion, and that a redox mechanism may occur on this phase. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 44 条
[1]   Interaction of carbon dioxide with the surface of zirconia polymorphs [J].
Bachiller-Baeza, B ;
Rodriguez-Ramos, I ;
Guerrero-Ruiz, A .
LANGMUIR, 1998, 14 (13) :3556-3564
[2]   CATALYTIC COMBUSTION OF METHANE OVER SUPPORTED PALLADIUM CATALYSTS .2. SUPPORT AND POSSIBLE MORPHOLOGICAL EFFECTS [J].
BALDWIN, TR ;
BURCH, R .
APPLIED CATALYSIS, 1990, 66 (02) :359-381
[3]   CATALYTIC COMBUSTION OF METHANE OVER SUPPORTED PALLADIUM CATALYSTS .1. ALUMINA SUPPORTED CATALYSTS [J].
BALDWIN, TR ;
BURCH, R .
APPLIED CATALYSIS, 1990, 66 (02) :337-358
[4]   CHEMISORPTION OF CARBON-MONOXIDE ON PALLADIUM SINGLE-CRYSTAL SURFACES - IR SPECTROSCOPIC EVIDENCE FOR LOCALIZED SITE ADSORPTION [J].
BRADSHAW, AM ;
HOFFMANN, FM .
SURFACE SCIENCE, 1978, 72 (03) :513-535
[5]   CATALYTIC-OXIDATION OF METHANE OVER PALLADIUM SUPPORTED ON ALUMINA - EFFECT OF AGING UNDER REACTANTS [J].
BRIOT, P ;
PRIMET, M .
APPLIED CATALYSIS, 1991, 68 (1-2) :301-314
[6]   INVESTIGATION OF THE ACTIVE STATE OF SUPPORTED PALLADIUM CATALYSTS IN THE COMBUSTION OF METHANE [J].
BURCH, R ;
URBANO, FJ .
APPLIED CATALYSIS A-GENERAL, 1995, 124 (01) :121-138
[7]   Some aspects of hydrocarbon activation on platinum group metal combustion catalysts [J].
Burch, R ;
Loader, PK ;
Urbano, FJ .
CATALYSIS TODAY, 1996, 27 (1-2) :243-248
[8]   Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane [J].
Carstens, JN ;
Su, SC ;
Bell, AT .
JOURNAL OF CATALYSIS, 1998, 176 (01) :136-142
[9]   ROLE OF INTERFACIAL PHENOMENA IN THE BEHAVIOR OF ALUMINA-SUPPORTED PALLADIUM CRYSTALLITES IN OXYGEN [J].
CHEN, JJ ;
RUCKENSTEIN, E .
JOURNAL OF PHYSICAL CHEMISTRY, 1981, 85 (11) :1606-1612
[10]   MICROCALORIMETRIC, SPECTROSCOPIC, AND KINETIC-STUDIES OF SILICA-SUPPORTED PT AND PT/SN CATALYSTS FOR ISOBUTANE DEHYDROGENATION [J].
CORTRIGHT, RD ;
DUMESIC, JA .
JOURNAL OF CATALYSIS, 1994, 148 (02) :771-778