Statistical significance for genomewide studies

被引:7393
作者
Storey, JD [1 ]
Tibshirani, R
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
false discovery rates; genomics; multiple hypothesis testing; q values;
D O I
10.1073/pnas.1530509100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the increase in genomewide experiments and the sequencing of multiple genomes, the analysis of large data sets has become commonplace in biology. It is often the case that thousands of features in a genomewide data set are tested against some null hypothesis, where a number of features are expected to be significant. Here we propose an approach to measuring statistical significance in these genomewide studies based on the concept of the false discovery rate. This approach offers a sensible balance between the number of true and false positives that is automatically calibrated and easily interpreted. In doing so, a measure of statistical significance called the q value is associated with each tested feature. The q value is similar to the well known p value, except it is a measure of significance in terms of the false discovery rate rather than the false positive rate. Our approach avoids a flood of false positive results, while offering a more liberal criterion than what has been used in genome scans for linkage.
引用
收藏
页码:9440 / 9445
页数:6
相关论文
共 26 条
[1]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases [J].
Blencowe, BJ .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :106-110
[4]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[5]  
CHURCHILL GA, 1994, GENETICS, V138, P963
[6]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[7]   Empirical Bayes methods and false discovery rates for microarrays [J].
Efron, B ;
Tibshirani, R .
GENETIC EPIDEMIOLOGY, 2002, 23 (01) :70-86
[8]  
EFRON B, 2001, 2001217 STANF U
[9]   Predictive identification of exonic splicing enhancers in human genes [J].
Fairbrother, WG ;
Yeh, RF ;
Sharp, PA ;
Burge, CB .
SCIENCE, 2002, 297 (5583) :1007-1013
[10]   Operating characteristics and extensions of the false discovery rate procedure [J].
Genovese, C ;
Wasserman, L .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :499-517