Determination of the Hurst exponent by use of wavelet transforms

被引:216
作者
Simonsen, I [1 ]
Hansen, A
Nes, OM
机构
[1] Norges Tekn Nat Vitenskapelige Univ, Inst Fys, N-7034 Trondheim, Norway
[2] IKU Petro Res, N-7034 Trondheim, Norway
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 03期
关键词
D O I
10.1103/PhysRevE.58.2779
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a method for (global) Hurst exponent determination based on wavelets. Using this method, we analyze synthetic data with predefined Hurst exponents, fracture surfaces, and data from economy. The results are compared to those obtained with Fourier spectral analysis. When many samples are available, the wavelet and Fourier methods are comparable in accuracy. However, when one or only a few samples are available, the wavelet method outperforms the Fourier method by a large margin.
引用
收藏
页码:2779 / 2787
页数:9
相关论文
共 22 条
[1]   STUDY OF THE FRACTAL CHARACTER OF SURFACES BY SCANNING TUNNELING MICROSCOPY - ERRORS AND LIMITATIONS [J].
AGUILAR, M ;
ANGUIANO, E ;
VAZQUEZ, F ;
PANCORBO, M .
JOURNAL OF MICROSCOPY-OXFORD, 1992, 167 :197-213
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
[Anonymous], 1992, SMR
[4]   THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 213 (1-2) :232-275
[5]  
BAK P, UNPUB
[6]   FRACTAL DIMENSION OF FRACTURED SURFACES - A UNIVERSAL VALUE [J].
BOUCHAUD, E ;
LAPASSET, G ;
PLANES, J .
EUROPHYSICS LETTERS, 1990, 13 (01) :73-79
[7]   STATISTICS OF BRANCHED FRACTURE SURFACES [J].
BOUCHAUD, E ;
LAPASSET, G ;
PLANES, J ;
NAVEOS, S .
PHYSICAL REVIEW B, 1993, 48 (05) :2917-2928
[8]  
Falconer K., 2004, Fractal geometry-mathematical foundations and applications
[9]  
Feder J., 1988, FRACTALS PLENUM
[10]  
HANSEN AE, UNPUB