Quantum to classical transition for random walks

被引:152
作者
Brun, TA
Carteret, HA
Ambainis, A
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevLett.91.130602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We look at two possible routes to classical behavior for the discrete quantum random walk on the integers: decoherence in the quantum "coin" which drives the walk, or the use of higher-dimensional (or multiple) coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the "quantum" quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits "classical" linear growth of the variance even for weak decoherence.
引用
收藏
页码:130602 / 130602
页数:4
相关论文
共 23 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]  
Andris Ambainis, 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[3]  
[Anonymous], QUANTPH0010117
[4]  
Bach E., QUANTPH0207008
[5]   Quantum walks driven by many coins [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW A, 2003, 67 (05) :17
[6]  
CHILDS AM, QUANTPH0209131
[7]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[8]  
Dorit Aharonov, 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[9]  
DU J, QUANTPH0203120
[10]  
DUR W, QUANTPH0207137