Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrodinger equation

被引:15
作者
Fibich, G [1 ]
Levy, D
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Ecole Normale Super, Dept Math & Informat, F-75230 Paris 05, France
关键词
D O I
10.1016/S0375-9601(98)00744-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze serf-focusing and singularity formation in the complex Ginzburg-Landau equation (CGL) in the regime where it;is close to the critical nonlinear Schrodinger equation. Using modulation theory [Fibich and Papanicolaou, Phys. Lett. A 239 (1998) 167], we derive a reduced system of ordinary differential equations that describes self-focusing in CGL. Analysis of the reduced system shows that in the physical regime of the parameters there is no blowup in CGL. Rather, the solution focuses once and then defocuses. The validity of the analysis is verified by comparison of numerical solutions of CGL with those of the reduced system. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:286 / 294
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[3]   A modulation method for self-focusing in the perturbed critical nonlinear Schrodinger equation [J].
Fibich, G ;
Papanicolaou, G .
PHYSICS LETTERS A, 1998, 239 (03) :167-173
[4]   Adiabatic law for self-focusing of optical beams [J].
Fibich, G .
OPTICS LETTERS, 1996, 21 (21) :1735-1737
[5]  
FIBICH G, 1997, 9721 UCLA
[6]  
FRAIMAN GM, 1985, ZH EKSP TEOR FIZ, V61, P228
[7]   RATE OF BLOWUP FOR SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AT CRITICAL DIMENSION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICAL REVIEW A, 1988, 38 (08) :3837-3843
[8]   STABILITY OF ISOTROPIC SINGULARITIES FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL ;
WANG, XP .
PHYSICA D, 1991, 47 (03) :393-415
[9]   LOCAL-STRUCTURE OF THE SELF-FOCUSING SINGULARITY OF THE NONLINEAR SCHRODINGER-EQUATION [J].
LEMESURIER, BJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICA D, 1988, 32 (02) :210-226
[10]   Inertial ranges for turbulent solutions of complex Ginzburg-Landau equations [J].
Levermore, CD ;
Stark, DR .
PHYSICS LETTERS A, 1997, 234 (04) :269-280