A tandem orthogonal proteolysis strategy for high-content chemical proteomics

被引:170
作者
Speers, AE
Cravatt, BF
机构
[1] Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/ja0532842
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field of proteomics aims to assign functions to the numerous protein products encoded by eukaryotic and prokaryotic genomes. Toward this end, chemical strategies have emerged as a powerful means to enrich specific classes of proteins based on shared functional properties, such as catalytic activity [activity-based protein profiling (ABPP)], and post-translational modification state. The theoretical information content in chemical proteomic experiments greatly exceeds the actual data procured, due in large part to limitations in existing analytical technologies. Here, we present a tandem orthogonal proteolysis (TOP) strategy for high-content chemical proteomics that enables the parallel characterization of probe-labeled proteins and sites of probe modification. The TOP approach exploits "click chemistry" to introduce a multifunctional tag onto probe-labeled proteins that contains both a biotin group for protein enrichment and a tobacco etch virus (TEV) protease cleavage site for selective release of probe-modified peptides. Following capture on streptavidin beads, protein targets of probes and their sites of labeling are sequentially identified by a two-step proteolysis strategy (trypsin and TEV, respectively). We apply the TOP method to characterize targets of sulfonate ester ABPP probes in tissue proteomes, resulting in the discovery of numerous active site-labeled enzymes. Enzymes modified on regulatory sites and proteins of unknown function were also identified. These findings indicate that a wide range of functional residues are targeted by sulfonate ester probes and highlight the value of TOP-based chemical proteomics for the characterization of proteins and the residues that regulate their activity. Copyright © 2005 American Chemical Society.
引用
收藏
页码:10018 / 10019
页数:2
相关论文
共 24 条
[1]   Mapping enzyme active sites in complex proteomes [J].
Adam, GC ;
Burbaum, J ;
Kozarich, JW ;
Patricelli, MP ;
Cravatt, BF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (05) :1363-1368
[2]   Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :805-809
[3]  
Corthals GL, 2000, ELECTROPHORESIS, V21, P1104, DOI 10.1002/(SICI)1522-2683(20000401)21:6<1104::AID-ELPS1104>3.0.CO
[4]  
2-C
[5]   3-DIMENSIONAL STRUCTURE OF BUTYRYL-COA DEHYDROGENASE FROM MEGASPHAERA-ELSDENII [J].
DJORDJEVIC, S ;
PACE, CP ;
STANKOVICH, MT ;
KIM, JJP .
BIOCHEMISTRY, 1995, 34 (07) :2163-2171
[6]   MOLECULAR GENETIC-ANALYSIS OF A PLANT-VIRUS POLYPROTEIN CLEAVAGE SITE - A MODEL [J].
DOUGHERTY, WG ;
CARY, SM ;
PARKS, TD .
VIROLOGY, 1989, 171 (02) :356-364
[7]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[8]   Crystal structure of human quinone reductase type 2, a metalloflavoprotein [J].
Foster, CE ;
Bianchet, MA ;
Talalay, P ;
Zhao, QJ ;
Amzel, LM .
BIOCHEMISTRY, 1999, 38 (31) :9881-9886
[9]   Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J].
Gygi, SP ;
Rist, B ;
Gerber, SA ;
Turecek, F ;
Gelb, MH ;
Aebersold, R .
NATURE BIOTECHNOLOGY, 1999, 17 (10) :994-999
[10]   Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography [J].
Hansen, KC ;
Schmitt-Ulms, G ;
Chalkley, RJ ;
Hirsch, J ;
Baldwin, MA ;
Burlingame, AL .
MOLECULAR & CELLULAR PROTEOMICS, 2003, 2 (05) :299-314