A late methanogen origin for molybdenum-dependent nitrogenase

被引:105
作者
Boyd, E. S. [1 ,2 ]
Anbar, A. D. [3 ,4 ]
Miller, S. [5 ]
Hamilton, T. L. [1 ,2 ]
Lavin, M. [6 ]
Peters, J. W. [1 ,2 ]
机构
[1] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[2] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA
[3] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[4] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA
[5] Univ Montana, Dept Biol Sci, Missoula, MT 59812 USA
[6] Montana State Univ, Dept Plant Sci, Bozeman, MT 59717 USA
基金
美国国家科学基金会;
关键词
GREAT OXIDATION EVENT; IN-VITRO SYNTHESIS; AZOTOBACTER-VINELANDII; EVOLUTIONARY HISTORY; MOLECULAR EVOLUTION; PROTEROZOIC OCEAN; DIVERGENCE TIMES; ARCHEAN OCEAN; GENE-CLUSTER; IRON PROTEIN;
D O I
10.1111/j.1472-4669.2011.00278.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox-stratified oceans during the late Archean to early Proterozoic (c. 2.5-2.0 Ga). It has been suggested that the iron (Fe)- or vanadium (V)-dependent nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen fixation during this time because oceans were depleted in Mo and rich in Fe. We evaluated this hypothesis by examining the phylogenetic relationships of proteins that are required for the biosynthesis of the active site cofactor of Mo-nitrogenase in relation to structural proteins required for Fe-, V- and Mo-nitrogenase. The results are highly suggestive that among extant nitrogen-fixing organisms for which genomic information exists, Mo-nitrogenase is unlikely to have been associated with the Last Universal Common Ancestor. Rather, the origin of Mo-nitrogenase can be traced to an ancestor of the anaerobic and hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes. A comparison of substitution rates estimated for proteins required for the biosynthesis of the nitrogenase active site cofactor and for a set of paralogous proteins required for the biosynthesis of bacteriochlorophyll suggests that Nif emerged from a nitrogenase-like ancestor approximately 1.5-2.2 Ga. An origin and ensuing proliferation of Mo-nitrogenase under anoxic conditions would likely have occurred in an environment where anaerobic methanogens and Firmicutes coexisted and where Mo was at least episodically available, such as in a redox-stratified Proterozoic ocean basin.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 78 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].
Anbar, AD ;
Knoll, AH .
SCIENCE, 2002, 297 (5584) :1137-1142
[3]   OCEANS Elements and Evolution [J].
Anbar, Ariel D. .
SCIENCE, 2008, 322 (5907) :1481-1483
[4]   A whiff of oxygen before the Great Oxidation Event? [J].
Anbar, Ariel D. ;
Duan, Yun ;
Lyons, Timothy W. ;
Arnold, Gail L. ;
Kendall, Brian ;
Creaser, Robert A. ;
Kaufman, Alan J. ;
Gordon, Gwyneth W. ;
Scott, Clinton ;
Garvin, Jessica ;
Buick, Roger .
SCIENCE, 2007, 317 (5846) :1903-1906
[5]  
[Anonymous], CH MICROBIOL SER
[6]   The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny [J].
Baldauf, SL ;
Palmer, JD ;
Doolittle, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7749-7754
[7]   Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? [J].
Beaumont, V ;
Robert, F .
PRECAMBRIAN RESEARCH, 1999, 96 (1-2) :63-82
[8]   Highways of gene sharing in prokaryotes [J].
Beiko, RG ;
Harlow, TJ ;
Ragan, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14332-14337
[9]   PRODUCTS OF THE IRON-MOLYBDENUM COFACTOR-SPECIFIC BIOSYNTHETIC GENES, NIFE AND NIFN, ARE STRUCTURALLY HOMOLOGOUS TO THE PRODUCTS OF THE NITROGENASE MOLYBDENUM-IRON PROTEIN GENES, NIFD AND NIFK [J].
BRIGLE, KE ;
WEISS, MC ;
NEWTON, WE ;
DEAN, DR .
JOURNAL OF BACTERIOLOGY, 1987, 169 (04) :1547-1553
[10]   Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia [J].
Brocks, JJ ;
Buick, R ;
Logan, GA ;
Summons, RE .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (22) :4289-4319