Practical selection of SVM parameters and noise estimation for SVM regression

被引:1572
作者
Cherkassky, V [1 ]
Ma, YQ [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
complexity control; loss function; parameter selection; prediction accuracy; support vector machine regression; VC theory;
D O I
10.1016/S0893-6080(03)00169-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate practical selection of hyper-parameters for support vector machines (SVM) regression (that is, epsilon-insensitive zone and regularization parameter C). The proposed methodology advocates analytic parameter selection directly from the training data, rather than re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of insensitive zone epsilon, as a function of training sample size. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low- and high-dimensional regression problems. Further, we point out the importance of Vapnik's epsilon-insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression (using proposed selection of epsilon-values) with regression using 'least-modulus' loss (epsilon = 0) and standard squared loss. These comparisons indicate superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 18 条
  • [1] [Anonymous], 1999, The Nature Statist. Learn. Theory
  • [2] [Anonymous], ADV KERNEL METHODS S
  • [3] CHAPELLE O, 1999, MODEL SELECTION SUPP, V12
  • [4] Model complexity control for regression using VC generalization bounds
    Cherkassky, V
    Shao, XH
    Mulier, FM
    Vapnik, VN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1075 - 1089
  • [5] Comparison of model selection for regression
    Cherkassky, V
    Ma, YQ
    [J]. NEURAL COMPUTATION, 2003, 15 (07) : 1691 - 1714
  • [6] Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
  • [7] Drucker H, 1997, ADV NEUR IN, V9, P155
  • [8] Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
  • [9] ROBUST ESTIMATION OF LOCATION PARAMETER
    HUBER, PJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 73 - &
  • [10] Kwok JT, 2001, LECT NOTES COMPUT SC, V2130, P405