Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

被引:386
作者
Revzin, A [1 ]
Russell, RJ [1 ]
Yadavalli, VK [1 ]
Koh, WG [1 ]
Deister, C [1 ]
Hile, DD [1 ]
Mellott, MB [1 ]
Pishko, MV [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, Fenske Lab 158, University Pk, PA 16802 USA
关键词
D O I
10.1021/la010075w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 mum by the use of different photomasks, while height varied from 3 to 12 mum, depending on the molecular weight of the PEG macromer. In the case of 7 mum diameter elements, as many as 400 elements were reproducibly generated in a 1 mm(2) square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week Period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.
引用
收藏
页码:5440 / 5447
页数:8
相关论文
共 47 条
[1]  
AYALA GA, 1992, ANN NY ACAD SCI, V672, P283
[2]   FTIR AND AFM STUDIES OF THE KINETICS AND SELF-ASSEMBLY OF ALKYLTRICHLOROSILANES AND (PERFLUOROALKYL)TRICHLOROSILANES ONTO GLASS AND SILICON [J].
BANGA, R ;
YARWOOD, J ;
MORGAN, AM ;
EVANS, B ;
KELLS, J .
LANGMUIR, 1995, 11 (11) :4393-4399
[3]   Microfluidic tectonics: A comprehensive construction platform for microfluidic systems [J].
Beebe, DJ ;
Moore, JS ;
Yu, Q ;
Liu, RH ;
Kraft, ML ;
Jo, BH ;
Devadoss, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13488-13493
[4]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[5]   REDUCTION OF FIBRINOGEN ADSORPTION ON PEG-COATED POLYSTYRENE SURFACES [J].
BERGSTROM, K ;
HOLMBERG, K ;
SAFRANJ, A ;
HOFFMAN, AS ;
EDGELL, MJ ;
KOZLOWSKI, A ;
HOVANES, BA ;
HARRIS, JM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1992, 26 (06) :779-790
[6]   SILANIZATION OF SOLID SUBSTRATES - A STEP TOWARD REPRODUCIBILITY [J].
BRZOSKA, JB ;
BENAZOUZ, I ;
RONDELEZ, F .
LANGMUIR, 1994, 10 (11) :4367-4373
[7]   Adhesion prevention with ancrod released via a tissue-adherent hydrogel [J].
Chowdhury, SM ;
Hubbell, JA .
JOURNAL OF SURGICAL RESEARCH, 1996, 61 (01) :58-64
[8]   Selective deposition in multilayer assembly: SAMs as molecular templates [J].
Clark, SL ;
Montague, M ;
Hammond, PT .
SUPRAMOLECULAR SCIENCE, 1997, 4 (1-2) :141-146
[9]   ASSESSING THE STRUCTURAL INTEGRITY OF A LYOPHILIZED PROTEIN IN ORGANIC-SOLVENTS [J].
DESAI, UR ;
KLIBANOV, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (14) :3940-3945
[10]  
Ghandhi S.K., 1994, VLSI FABRICATION PRI