Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease

被引:55
作者
Laird, Dale W. [1 ,2 ]
机构
[1] Univ Western Ontario, Dept Anat & Cell Biol, London, ON N6A 5C1, Canada
[2] Univ Western Ontario, Dept Physiol & Pharmacol, London, ON N6A 5C1, Canada
关键词
D O I
10.1074/jbc.R700041200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells within the vast majority of human tissues communicate directly through clustered arrays of intercellular channels called gap junctions. Gene ablation studies in mouse models have revealed that these intercellular channels are necessary for a variety of organ functions and that some of these genes are essential for survival. Molecular genetics has uncovered that germ line mutations in nearly half of the genes that encode the 21-member connexin family of gap junction proteins are linked to one or more human diseases. Frequently, these mutations are autosomal recessive, whereas in other cases, autosomal dominant mutations manifest as disease. Given the broad and overlapping distribution of connexins in a wide arrangement of tissues, it is hard to predict where connexin-linked diseases will clinically manifest. For instance, the most prevalent connexin in the human body is connexin-43 (Cx43), yet autosomal dominant mutations in the GJA1 gene, which encodes Cx43, exhibit modest developmental disorders resulting in a disease termed oculodentodigital dysplasia. Autosomal recessive mutations in the gene encoding Cx26 result in moderate to severe sensorineural hearing loss, whereas autosomal dominant mutations produce hearing loss and a wide range of skin diseases, including palmoplantar keratoderma. Here, we will focus on autosomal dominant mutations of the genes encoding Cx26 and Cx43 in relation to models that link genotypes to phenotypic outcomes with particular reference to how these approaches provide insight into human disease.
引用
收藏
页码:2997 / 3001
页数:5
相关论文
共 42 条
  • [1] Genotype/phenotype correlation in affected individuals of a family with a deletion of the entire coding sequence of the connexin 32 gene
    Ainsworth, PJ
    Bolton, CF
    Murphy, BC
    Stuart, JA
    Hahn, AF
    [J]. HUMAN GENETICS, 1998, 103 (02) : 242 - 244
  • [2] Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders
    Bakirtzis, G
    Choudhry, R
    Aasen, T
    Shore, L
    Brown, K
    Bryson, S
    Forrow, S
    Tetley, L
    Finbow, M
    Greenhalgh, D
    Hodgins, M
    [J]. HUMAN MOLECULAR GENETICS, 2003, 12 (14) : 1737 - 1744
  • [3] The effects of a mutant connexin 26 on epidermal differentiation
    Bakirtzis, G
    Jamieson, S
    Aasen, T
    Bryson, S
    Forrow, S
    Tetley, L
    Finbow, M
    Greenhalgh, D
    Hodgins, M
    [J]. CELL COMMUNICATION AND ADHESION, 2003, 10 (4-6) : 359 - 364
  • [4] GJA12 mutations in children with recessive hypomyelinating leukoencephalopathy
    Bugiani, M.
    Al Shahwan, S.
    Lamantea, E.
    Bizzi, A.
    Bakhsh, E.
    Moroni, I.
    Balestrini, M. R.
    Uziel, G.
    Zeviani, M.
    [J]. NEUROLOGY, 2006, 67 (02) : 273 - 279
  • [5] Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD)
    Debeer, P
    Van Esch, H
    Huysmans, C
    Pijkels, E
    De Smet, L
    Van de Ven, W
    Devriendt, K
    Fryns, JP
    [J]. EUROPEAN JOURNAL OF MEDICAL GENETICS, 2005, 48 (04) : 377 - 387
  • [6] A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia
    Flenniken, AM
    Osborne, LR
    Anderson, N
    Ciliberti, N
    Fleming, C
    Gittens, JEI
    Gong, XQ
    Kelsey, LB
    Lounsbury, C
    Moreno, L
    Nieman, BJ
    Peterson, K
    Qu, DW
    Roscoe, W
    Shao, Q
    Tong, D
    Veitch, GIL
    Voronina, I
    Vukobradovic, I
    Wood, GA
    Zhu, YH
    Zirngibl, RA
    Aubin, JE
    Bai, DL
    Bruneau, BG
    Grynpas, M
    Henderson, JE
    Henkelman, RM
    McKerlie, C
    Sled, JG
    Stanford, WL
    Laird, DW
    Kidder, GM
    Adamson, SL
    Rossant, J
    [J]. DEVELOPMENT, 2005, 132 (19): : 4375 - 4386
  • [7] Gerido DA, 2004, BBA-BIOMEMBRANES, V1662, P159, DOI 10.1016/j.bbamem.2003.10.017
  • [8] Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation
    Gollob, Michael H.
    Jones, Douglas L.
    Krahn, Andrew D.
    Danis, Lynne
    Gong, Xiang-Qun
    Shao, Qing
    Liu, Xiaoqin
    Veinot, John P.
    Tang, Anthony S. L.
    Stewart, Alexandre F. R.
    Tesson, Frederique
    Klein, George J.
    Yee, Raymond
    Skanes, Allan C.
    Guiraudon, Gerard M.
    Ebihara, Lisa
    Bai, Donglin
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (25) : 2677 - 2688
  • [9] Differential potency of dominant negative connexin43 mutants in oculodentodigital dysplasia
    Gong, Xiang-Qun
    Shao, Qing
    Langlois, Stephanie
    Bai, Donglin
    Laird, Dale W.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (26) : 19190 - 19202
  • [10] Functional characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and palmoplantar keratoderma
    Gong, Xiang-Qun
    Shao, Qing
    Lounsbury, Crystal S.
    Bai, Donglin
    Laird, Dale W.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (42) : 31801 - 31811