Bifurcation of gap solitons through catastrophe theory

被引:32
作者
Conti, C
Trillo, S
机构
[1] Univ Ferrara, Dept Engn, I-44100 Ferrara, Italy
[2] Ist Nazl Fis Mat, RM3, I-00146 Rome, Italy
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 03期
关键词
D O I
10.1103/PhysRevE.64.036617
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the theory of optical gap solitons, slowly-moving finite-amplitude Lorentzian solutions are found to mediate the transition from bright to coexistent dark-antidark solitary wave pairs when the laser frequency is detuned out of the proper edge of a dynamical photonic band gap. Catastrophe theory is applied to give a geometrical description of this strongly asymmetrical "morphing" process.
引用
收藏
页数:6
相关论文
共 22 条
[1]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[2]   Vibrations and oscillatory instabilities of gap solitons [J].
Barashenkov, IV ;
Pelinovsky, DE ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1998, 80 (23) :5117-5120
[3]   GAP SOLITONS AND THE NONLINEAR OPTICAL-RESPONSE OF SUPERLATTICES [J].
CHEN, W ;
MILLS, DL .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :160-163
[4]   SLOW BRAGG SOLITONS IN NONLINEAR PERIODIC STRUCTURES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
PHYSICAL REVIEW LETTERS, 1989, 62 (15) :1746-1749
[5]   Energy localization in photonic crystals of a purely nonlinear origin [J].
Conti, C ;
Trillo, S ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2000, 85 (12) :2502-2505
[6]   Existence, bistability, and instability of Kerr-like parametric gap solitons in quadratic media [J].
Conti, C ;
De Rossi, A ;
Trillo, S .
OPTICS LETTERS, 1998, 23 (16) :1265-1267
[7]   Excitation of self-transparency Bragg solitons in quadratic media [J].
Conti, C ;
Assanto, G ;
Trillo, S .
OPTICS LETTERS, 1997, 22 (17) :1350-1352
[8]   Stability, multistability, and wobbling of optical gap solitons [J].
De Rossi, A ;
Conti, C ;
Trillo, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :85-88
[9]   Bragg solitons and the nonlinear Schrodinger equation [J].
de Sterke, CM ;
Eggleton, BJ .
PHYSICAL REVIEW E, 1999, 59 (01) :1267-1269
[10]  
DESTERKE CM, 1994, PROGR OPTICS, V33, pCH3