Efficient input-output model representations

被引:366
作者
Rabitz, H [1 ]
Alis, ÖF
Shorter, J
Shim, K
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Mission Res Corp, Nashua, NH 03062 USA
[4] Kyonggi Univ, Dept Phys, Suwon 440760, South Korea
基金
美国国家航空航天局;
关键词
function approximation; multivariate analysis; statistical analysis; modelling;
D O I
10.1016/S0010-4655(98)00152-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A family of multivariate representations is presented to capture the input-output relationships of physical systems with many input variables. The high-dimensional model representations (HDMR) are based on the ansatz that for most physical systems, only relatively low order correlations of the input variables will have an impact on the output. Application of the HDMR tools can dramatically reduce the computational effort in representing the input-output relationships of a physical system. Two types of HDMR's are presented in this paper: ANOVA-HDMR is the same as the analysis of variance (ANOVA) decomposition used in statistics. Another cut-HDMR will be shown to be computationally more efficient than the ANOVA decomposition. Three test examples are given to illustrate the high computational efficiency of cut-HDMR. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 23 条
  • [1] ALIS OF, 1998, UNPUB GEN FDN HIGH D
  • [2] Sensitivity measures, ANOVA-like techniques and the use of bootstrap
    Archer, GEB
    Saltelli, A
    Sobol, IM
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (02) : 99 - 120
  • [3] ON NONLINEAR FUNCTIONS OF LINEAR-COMBINATIONS
    DIACONIS, P
    SHAHSHAHANI, M
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 175 - 191
  • [4] IMPACT OF HETEROGENEOUS REACTIONS ON STRATOSPHERIC CHEMISTRY OF THE ARCTIC
    DOUGLASS, AR
    STOLARSKI, RS
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1989, 16 (02) : 131 - 134
  • [5] THE JACKKNIFE ESTIMATE OF VARIANCE
    EFRON, B
    STEIN, C
    [J]. ANNALS OF STATISTICS, 1981, 9 (03) : 586 - 596
  • [6] PROJECTION PURSUIT REGRESSION
    FRIEDMAN, JH
    STUETZLE, W
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) : 817 - 823
  • [7] Gordon W. J., 1969, Proceedings of a symposium on approximation with special emphasis on spline functions, P223
  • [8] HUBER P, 1981, ANN STAT, V13, P435
  • [9] JACKMAN C, 1993, NASA GFSC MODEL
  • [10] Lorentz GG, 1996, Constructive approximation: Advanced problems, DOI New York