LiFePO4 modified Li1.02(Co0.9Fe0.1)0.98PO4 cathodes with improved lithium storage properties

被引:53
作者
Jang, I. C. [1 ]
Son, C. G. [1 ]
Yang, S. M. G. [1 ]
Lee, J. W. [1 ]
Cho, A. R. [1 ]
Aravindan, V. [1 ,2 ]
Park, G. J. [3 ]
Kang, K. S. [4 ]
Kim, W. S. [5 ]
Cho, W. I. [6 ]
Lee, Y. S. [1 ]
机构
[1] Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea
[2] Nanyang Technol Univ, Energy Res Inst, Singapore 637553, Singapore
[3] Saga Univ, Dept Appl Chem, Saga 8408502, Japan
[4] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[5] Daejung EM Co Ltd, Inchon 405820, South Korea
[6] Korea Inst Sci & Technol, Energy & Environm Div, Seoul 136791, South Korea
关键词
LI-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; LICOPO4; CONDUCTIVITY; PHOSPHATES; CARBON; LICOO2; FE;
D O I
10.1039/c1jm10574d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiCoPO4 and Li-1.02(Co0.9Fe0.1)(0.98)PO4 were prepared by conventional solid state reactions. The surface modification of Li-1.02(Co0.9Fe0.1)(0.98)PO4 particulates by LiFePO4 was successfully carried out by a dry coating procedure. TEM analysis confirmed the presence of a LiFePO4 coating layer of about 20 nm on the surface of the Li-1.02(Co0.9Fe0.1)(0.98)PO4 particles. All three cells delivered high initial discharge capacities of 122, 130 and 128 mA h g(-1) for LiCoPO4, Li-1.02(Co0.9Fe0.1)(0.98)PO4, and LiFePO4 modified Li-1.02(Co0.9Fe0.1)(0.98)PO4, respectively. However, these cells presented quite different cycle retention rates after 20 cycles, 21, 22 and 70% for LiCoPO4, Li-1.02(Co0.9Fe0.1)(0.98)PO4, and LiFePO4 modified Li-1.02(Co0.9Fe0.1)(0.98)PO4, respectively. The improved cycle retention of the LiFePO4-modified Li-1.02(Co0.9Fe0.1)(0.98)PO4 resulted from its reduced reactivity towards the electrolyte and the effective prevention of resistive layer formation on the LiCoPO4 surface during high voltage cycling.
引用
收藏
页码:6510 / 6514
页数:5
相关论文
共 19 条
[1]   Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries [J].
Amine, K ;
Yasuda, H ;
Yamachi, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (04) :178-179
[2]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[3]  
Aurbach Doron., 1999, NONAQUEOUS ELECTROCH
[4]   Surface modification of thin-film based LiCoPO45Vcathode with metal oxide [J].
Eftekhari, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) :A1456-A1460
[5]   Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials [J].
Han, Dong-Wook ;
Kang, Yong-Mook ;
Yin, Ri-Zhu ;
Song, Min-Sang ;
Kwon, Hyuk-Sang .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) :137-140
[6]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[7]   Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance [J].
Jang, I. C. ;
Lim, H. H. ;
Lee, S. B. ;
Karthikeyan, K. ;
Aravindan, V. ;
Kang, K. S. ;
Yoon, W. S. ;
Cho, W. I. ;
Lee, Y. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 497 (1-2) :321-324
[8]   Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries [J].
Kim, Do-Kyun ;
Park, Hyun-Min ;
Jung, Su-Jin ;
Jeong, Yeon Uk ;
Lee, Joon-Hyung ;
Kim, Jeong-Joo .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :237-240
[9]   Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J].
Kim, S. -B. ;
Lee, K. J. ;
Choi, W. J. ;
Kim, W. -S. ;
Jang, I. C. ;
Lim, H. H. ;
Lee, Y. S. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (06) :919-922
[10]   Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J].
Kim, W. -S. ;
Kim, S. -B. ;
Jang, I. C. ;
Lim, H. H. ;
Lee, Y. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 492 (1-2) :L87-L90