The role of reactive oxygen species in insulin signaling in the vasculature

被引:34
作者
Frank, GD
Eguchi, S
Motley, ED [1 ]
机构
[1] Meharry Med Coll, Dept Physiol, Nashville, TN 37208 USA
[2] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN USA
[3] Temple Univ, Sch Med, Cardiovasc Res Ctr, Philadelphia, PA USA
关键词
D O I
10.1089/ars.2005.7.1053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although there is an abundance of evidence suggesting that insulin resistance plays a significant role in the vasculature, the precise mechanistic role involved still remains unclear. In this review, we discuss the current background of insulin resistance in the context of insulin signaling and action in the vasculature. Also, studies suggest that insulin resistance, diabetes, and cardiovascular disease all share a common involvement with oxidative stress. Recently, we reported that lysophosphatidylcholine, a major bioactive product of oxidized low-density lipoprotein, and angiotensin II, a vasoactive hormone and a potent inducer of reactive oxygen species (ROS), negatively regulate insulin signaling in vascular smooth muscle cells (VSMCs). In endothelial cells, insulin stimulates the release of nitric oxide, which results in VSMC relaxation and inhibition of atherosclerosis. Other data suggest that angiotensin II inhibits the vasodilator effects of insulin through insulin receptor substrate-1 phosphorylation at Ser(312) and Ser(616). Moreover, ROS impair insulin-induced vasorelaxation by neutralizing nitric oxide to form peroxynitrite. Thus, evidence is growing to enable us to better understand mechanistically the relationship between insulin/insulin resistance and ROS in the vasculature, and the impact they have on cardiovascular disease.
引用
收藏
页码:1053 / 1061
页数:9
相关论文
共 99 条
[1]   Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells [J].
Andreozzi, F ;
Laratta, E ;
Sciacqua, A ;
Perticone, F ;
Sesti, G .
CIRCULATION RESEARCH, 2004, 94 (09) :1211-1218
[2]   Diabetes and atherosclerosis - Epidemiology, pathophysiology, and management [J].
Beckman, JA ;
Creager, MA ;
Libby, P .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (19) :2570-2581
[3]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[4]   Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells - Evaluation of the role of the nitric oxide signaling pathway and potential defects in hypertension [J].
Begum, N ;
Ragolia, L ;
Rienzie, J ;
McCarthy, M ;
Duddy, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :25164-25170
[5]   High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation [J].
Begum, N ;
Ragolia, L .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 278 (01) :C81-C91
[6]  
Berk BC, 1999, THROMB HAEMOSTASIS, V82, P810
[7]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[8]   A signaling pathway to translational control [J].
Brown, EJ ;
Schreiber, SL .
CELL, 1996, 86 (04) :517-520
[9]   Proliferative effect of insulin on cultured smooth muscle cells from rat mesenteric resistance vessels [J].
Cruzado, M ;
Risler, N ;
Castro, C ;
Ortiz, A ;
Rüttler, ME .
AMERICAN JOURNAL OF HYPERTENSION, 1998, 11 (01) :54-58
[10]   Hyperinsulinemia as an independent risk factor for ischemic heart disease [J].
Despres, JP ;
Lamarche, B ;
Mauriege, P ;
Cantin, B ;
Dagenais, GR ;
Moorjani, S ;
Lupien, PJ .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 334 (15) :952-957