In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy

被引:327
作者
Yajima, T
Uchida, H
Watanabe, M
机构
[1] Univ Yamanashi, Clean Energy Res Ctr, Kofu, Yamanashi 4008511, Japan
[2] Univ Yamanashi, Grad Sch Engn, Kofu, Yamanashi 4008511, Japan
关键词
D O I
10.1021/jp037215q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methanol oxidation reaction (MOR) has been investigated at sputtered Pt-Ru, Ru, and Pt electrodes by using in-situ FTIR spectroscopy with the attenuated total reflection technique (ATR), which can identify species adsorbed on the electrode surface. Linear CO, bridged CO, and COO- were detected as the intermediates in the MOR. The electro-oxidation of preadsorbed CO was also studied to clarify the mechanism of the MOR at these electrodes. Water molecules coadsorbed with CO were clearly detected at Pt-Ru and Ru electrodes at less positive potential region below the onset potential of ca. 400 mV vs RHE for the electro-oxidation of both methanol and preadsorbed CO. The IR-band intensities of both the adsorbed CO and water commenced to decrease simultaneously at ca. 400 mV on Pt-Ru alloy, demonstrating that the adsorbed CO is oxidized by consuming the adsorbed water. The pure Ru electrode exhibited a high activity for the oxidation of preadsorbed CO, but showed a low activity for the MOR due to the slow dehydrogenation adsorption of the methanol. It is clarified that Pt sites on the alloy surface dehydrogenate methanol and form CO dominantly while Ru sites adsorb water molecules preferentially as oxygen-species needed for the CO oxidation, presumably involved as Ru-OH formed by discharging the adsorbed water. These results support the "bifunctional mechanism" at Pt-Ru alloy for the oxidation of methanol and CO.
引用
收藏
页码:2654 / 2659
页数:6
相关论文
共 35 条
[1]  
Aricò AS, 2001, FUEL CELLS, V1, P133
[2]   In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions [J].
Ataka, K ;
Osawa, M .
LANGMUIR, 1998, 14 (04) :951-959
[3]   Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J].
Ataka, K ;
Yotsuyanagi, T ;
Osawa, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10664-10672
[4]   THE ELECTROOXIDATION OF CO - A TEST REACTION IN ELECTROCATALYSIS [J].
BEDEN, B ;
LAMY, C ;
DETACCONI, NR ;
ARVIA, AJ .
ELECTROCHIMICA ACTA, 1990, 35 (04) :691-704
[5]   Surface-enhanced infrared absorption of CO on platinized platinum [J].
Bjerke, AE ;
Griffiths, PR ;
Theiss, W .
ANALYTICAL CHEMISTRY, 1999, 71 (10) :1967-1974
[6]   Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes [J].
Brankovic, SR ;
Marinkovic, NS ;
Wang, JX ;
Adzic, RR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) :57-66
[7]   Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J].
Chen, YX ;
Miki, A ;
Ye, S ;
Sakai, H ;
Osawa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (13) :3680-3681
[8]   EFFECTS OF CONFIGURATION INTERACTION ON INTENSITIES AND PHASE SHIFTS [J].
FANO, U .
PHYSICAL REVIEW, 1961, 124 (06) :1866-&
[9]   ON THE ROLE OF RU AND SN AS PROMOTERS OF METHANOL ELECTROOXIDATION OVER PT [J].
FRELINK, T ;
VISSCHER, W ;
VANVEEN, JAR .
SURFACE SCIENCE, 1995, 335 (1-3) :353-360
[10]   CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: An IR spectroscopic study [J].
Friedrich, KA ;
Geyzers, KP ;
Linke, U ;
Stimming, U ;
Stumper, J .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 402 (1-2) :123-128