Ionic colloidal crystals of oppositely charged particles

被引:851
作者
Leunissen, ME
Christova, CG
Hynninen, AP
Royall, CP
Campbell, AI
Imhof, A
Dijkstra, M
van Roij, R
van Blaaderen, A
机构
[1] Univ Utrecht, Debye Inst, NL-3584 CC Utrecht, Netherlands
[2] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
D O I
10.1038/nature03946
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal suspensions are widely used to study processes such as melting, freezing(1-3) and glass transitions(4,5). This is because they display the same phase behaviour as atoms or molecules, with the nano- to micrometre size of the colloidal particles making it possible to observe them directly in real space(3,4). Another attractive feature is that different types of colloidal interactions, such as long-range repulsive(1,3), short-range attractive(5), hard-sphere-like(2-4) and dipolar(3), can be realized and give rise to equilibrium phases. However, spherically symmetric, long-range attractions ( that is, ionic interactions) have so far always resulted in irreversible colloidal aggregation(6). Here we show that the electrostatic interaction between oppositely charged particles can be tuned such that large ionic colloidal crystals form readily, with our theory and simulations confirming the stability of these structures. We find that in contrast to atomic systems, the stoichiometry of our colloidal crystals is not dictated by charge neutrality; this allows us to obtain a remarkable diversity of new binary structures. An external electric field melts the crystals, confirming that the constituent particles are indeed oppositely charged. Colloidal model systems can thus be used to study the phase behaviour of ionic species. We also expect that our approach to controlling opposite-charge interactions will facilitate the production of binary crystals of micrometre-sized particles, which could find use as advanced materials for photonic applications(7).
引用
收藏
页码:235 / 240
页数:6
相关论文
共 31 条
  • [1] BARTLETT P, IN PRESS PHYS REV LE
  • [2] Colloidal interactions and self-assembly using DNA hybridization
    Biancaniello, PL
    Kim, AJ
    Crocker, JC
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (05)
  • [3] Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization
    Bosma, G
    Pathmamanoharan, C
    de Hoog, EHA
    Kegel, WK
    van Blaaderen, A
    Lekkerkerker, HNW
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 245 (02) : 292 - 300
  • [4] Order-disorder transition in the solid phase of a charged hard sphere model
    Bresme, F
    Vega, C
    Abascal, JLF
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (15) : 3217 - 3220
  • [5] Oppositely charged colloidal binary mixtures:: A colloidal analog of the restricted primitive model
    Caballero, JB
    Puertas, AM
    Fernández-Barbero, A
    de las Nieves, FJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (05) : 2428 - 2435
  • [6] Dresselhaus M. S., 1996, SCI FULLERENES CARBO
  • [7] Lane formation in colloidal mixtures driven by an external field -: art. no. 021402
    Dzubiella, J
    Hoffmann, GP
    Löwen, H
    [J]. PHYSICAL REVIEW E, 2002, 65 (02) : 1 - 021402
  • [8] FRENKEL D, 2002, UNDERSTANDING MOL SI, pCH5
  • [9] Flexible active-matrix displays and shift registers based on solution-processed organic transistors
    Gelinck, GH
    Huitema, HEA
    Van Veenendaal, E
    Cantatore, E
    Schrijnemakers, L
    Van der Putten, JBPH
    Geuns, TCT
    Beenhakkers, M
    Giesbers, JB
    Huisman, BH
    Meijer, EJ
    Benito, EM
    Touwslager, FJ
    Marsman, AW
    Van Rens, BJE
    De Leeuw, DM
    [J]. NATURE MATERIALS, 2004, 3 (02) : 106 - 110
  • [10] PHASE SEPARATION IN MONODISPERSE LATEXES
    HACHISU, S
    KOBAYASHI, Y
    KOSE, A
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1973, 42 (02) : 342 - 348