Satellite methods underestimate indirect climate forcing by aerosols

被引:108
作者
Penner, Joyce E. [1 ]
Xu, Li [1 ]
Wang, Minghuai [2 ]
机构
[1] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[2] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA
基金
美国国家航空航天局;
关键词
GENERAL-CIRCULATION MODEL; PARAMETERIZATION; ACTIVATION; CLOUD; LMDZ;
D O I
10.1073/pnas.1018526108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (N-c) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of N-c. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for In (N-c) versus In (AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for N-c. Using In(N-c) versus In(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for N-c provides estimates for N-c and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using In(N-c) versus In(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%.
引用
收藏
页码:13404 / 13408
页数:5
相关论文
共 24 条
[1]   A parameterization of aerosol activation 2. Multiple aerosol types [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D5) :6837-6844
[2]   A parameterization of aerosol activation - 3. Sectional representation [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D3)
[3]   Uncertainty analysis for estimates of the first indirect aerosol effect [J].
Chen, Y ;
Penner, JE .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2935-2948
[4]   Modeling of the first indirect effect: Analysis of measurement requirements [J].
Feingold, G .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (19) :ASC7-1
[5]  
Forster P, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P129
[6]   Evaluation of aerosol direct radiative forcing in MIRAGE [J].
Ghan, S ;
Laulainen, N ;
Easter, R ;
Wagener, R ;
Nemesure, S ;
Chapman, E ;
Zhang, Y ;
Leung, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D6) :5295-5316
[7]   A dynamic aerosol module for global chemical transport models: Model description [J].
Herzog, M ;
Weisenstein, DK ;
Penner, JE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D18) :D182021-12
[8]   Global indirect aerosol effects: a review [J].
Lohmann, U ;
Feichter, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :715-737
[9]   Stronger constraints on the anthropogenic indirect aerosol effect [J].
Lohmann, U ;
Lesins, G .
SCIENCE, 2002, 298 (5595) :1012-1015
[10]   An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing [J].
McComiskey, Allison ;
Feingold, Graham ;
Frisch, A. Shelby ;
Turner, David D. ;
Miller, Mark A. ;
Chiu, J. Christine ;
Min, Qilong ;
Ogren, John A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114 :D09203