Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes

被引:588
作者
Thomas, T [1 ]
Gori, F [1 ]
Khosla, S [1 ]
Jensen, MD [1 ]
Burguera, B [1 ]
Riggs, BL [1 ]
机构
[1] Mayo Clin & Mayo Fdn, Endocrine Res Unit, Rochester, MN 55905 USA
关键词
D O I
10.1210/en.140.4.1630
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Both bone mass and serum leptin levels are increased in obesity. Because osteoblasts and adipocytes arise from a common precursor in bone marrow, we assessed the effects of human recombinant leptin on a conditionally immortalized human marrow stromal cell line, hMS2-12, with the potential to differentiate to either the osteoblast or adipocyte phenotypes. By RT-PCR and Western immunoblot analysis, the hMS2-12 cells expressed messenger RNA (mRNA) and protein for the leptin receptor. Leptin did not affect hMS2-12 cell proliferation, but resulted in dose- and time-dependent increases in mRNA and protein levels of alkaline phosphatase, type I collagen, and osteocalcin, and in a 59% increase in mineralized matrix. Leptin increased mRNA levels of lipoprotein lipase at 3 days, but decreased mRNA levels of adipsin and leptin at 9 days and decreased lipid droplet formation by 50%. Leptin did not affect the expression of Cbfa1 or peroxisome proliferator-activated receptor-gamma(2), transcription factors involved in commitment to the osteoblast and adipocyte pathways, respectively. Thus, leptin acts on human marrow stromal cells to enhance osteoblast differentiation and to inhibit adipocyte differentiation. Our data support the hypothesis that leptin is a previously unrecognized, physiological regulator of these two differentiation pathways, acting primarily on maturation of stromal cells into both lineages.
引用
收藏
页码:1630 / 1638
页数:9
相关论文
共 51 条
[1]   CELLULAR AND MOLECULAR ASPECTS OF ADIPOSE-TISSUE DEVELOPMENT [J].
AILHAUD, G ;
GRIMALDI, P ;
NEGREL, R .
ANNUAL REVIEW OF NUTRITION, 1992, 12 :207-233
[2]  
Aubin Jane E., 1993, P1
[3]   Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones [J].
Bai, YL ;
Zhang, SY ;
Kim, KS ;
Lee, JK ;
Kim, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (24) :13939-13942
[4]   Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting [J].
Baskin, DG ;
Seeley, RJ ;
Kuijper, JL ;
Lok, S ;
Weigle, DS ;
Erickson, JC ;
Palmiter, RD ;
Schwartz, MW .
DIABETES, 1998, 47 (04) :538-543
[5]   The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors [J].
Baumann, H ;
Morella, KK ;
White, DW ;
Dembski, M ;
Bailon, PS ;
Kim, HK ;
Lai, CF ;
Tartaglia, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8374-8378
[6]   A role for leptin and its cognate receptor in hematopoiesis [J].
Bennett, BD ;
Solar, GP ;
Yuan, JQ ;
Mathias, J ;
Thomas, GR ;
Matthews, W .
CURRENT BIOLOGY, 1996, 6 (09) :1170-1180
[7]  
Bodine PVN, 1996, J BONE MINER RES, V11, P806
[8]   Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue [J].
Cinti, S ;
Frederich, RC ;
Zingaretti, MC ;
DeMatteis, R ;
Flier, JS ;
Lowell, BB .
ENDOCRINOLOGY, 1997, 138 (02) :797-804
[9]   Serum immunoreactive leptin concentrations in normal-weight and obese humans [J].
Considine, RV ;
Sinha, MK ;
Heiman, ML ;
Kriauciunas, A ;
Stephens, TW ;
Nyce, MR ;
Ohannesian, JP ;
Marco, CC ;
McKee, LJ ;
Bauer, TL ;
Caro, JF .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 334 (05) :292-295
[10]   Localization of leptin receptor in the human brain [J].
Couce, ME ;
Burguera, B ;
Parisi, JE ;
Jensen, MD ;
Lloyd, RV .
NEUROENDOCRINOLOGY, 1997, 66 (03) :145-150