Adaptive numerical analysis in primal elastoplasticity with hardening

被引:60
作者
Alberty, J [1 ]
Carstensen, C [1 ]
Zarrabi, D [1 ]
机构
[1] Univ Kiel, Math Seminar 2, D-24098 Kiel, Germany
关键词
D O I
10.1016/S0045-7825(98)00210-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quasi-static viscoplastic resp. elastoplastic evolution problem with isotropic or kinematic hardening is considered with emphasis on optimal convergence and adapted mesh-refining in the spatial discretization. Within one time-step of an implicit time-discretization, the finite element method leads to a minimisation problem for non-smooth convex functions on discrete subspaces. For piecewise constant resp. affine ansatz functions, the stress resp, displacement approximations are experimentally and theoretically shown to converge linearly. An a posteriori error estimate then justifies an automatic adaptive mesh-refining algorithm. Numerical examples support the superiority of the adapted mesh. (C) 1999 Published by Elsevier Science S.A. All rights reserved.
引用
收藏
页码:175 / 204
页数:30
相关论文
共 21 条
[1]  
ALBERTY J, 1998, THESIS U KIEL GERMAN
[2]  
ALBERTY J, 1998, MATH SEM KIEL
[3]  
[Anonymous], RAIRO RAN R
[4]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[5]  
CARSTENSEN C, 1997, MATH SEM KIEL
[6]  
CARSTENSEN C, IN PRESS NUMER MATH
[7]  
Carstensen C, 1997, NLAA, V4, P1
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Eriksson K., 1995, Acta Numerica, V4, P105
[10]  
HAN W, 1992, NUMER MATH, V60, P493