Reply to 'Comment on "Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes" '

被引:3
作者
Binder, K [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
phase coexistence; phase transitions; Ising model; finite-size effects; droplets;
D O I
10.1016/S0378-4371(03)00392-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In their comment to the paper "Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes" [Physica A 319 (2003) 99], Biskup et al. claim that in finite systems at fixed density "the physical significance of the conjugate thermodynamic variable is of dubious value". This claim is critically discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:589 / 592
页数:4
相关论文
共 14 条
[1]   CRITICAL CLUSTERS IN A SUPERSATURATED VAPOR - THEORY AND MONTE-CARLO SIMULATION [J].
BINDER, K ;
KALOS, MH .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (03) :363-396
[2]   Theory of the evaporation /condensation transition of equilibrium droplets in finite volumes [J].
Binder, K .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 :99-114
[3]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[4]  
BINDER K, 1992, MONTE CARLO METHODS
[5]   On the formation/dissolution of equilibrium droplets [J].
Biskup, M ;
Chayes, L ;
Kotecky, R .
EUROPHYSICS LETTERS, 2002, 60 (01) :21-27
[6]   A RIGOROUS THEORY OF FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :79-119
[7]  
Frenkel D., 1996, UNDERSTANDING MOL SI
[8]   2-PHASE EQUILIBRIA AND NUCLEATION BARRIERS NEAR A CRITICAL-POINT [J].
FURUKAWA, H ;
BINDER, K .
PHYSICAL REVIEW A, 1982, 26 (01) :556-566
[9]  
Hill T., 1963, Metatheatre
[10]  
Landau D.P., 2015, A Guide to Monte Carlo Simulations in Statistical Physics, Vfourth