On transformations of actuarial valuation principles

被引:12
作者
Moller, T [1 ]
机构
[1] Univ Copenhagen, Lab Actuarial Math, DK-2100 Copenhagen O, Denmark
关键词
indifference pricing; variance principle; standard deviation principle; unit-linked insurance; variance optimal martingale measure;
D O I
10.1016/S0167-6687(00)00074-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we determine optimal trading strategies associated with the financial variance and standard deviation principles proposed by Schweizer [2001. Insurance: Mathematics and Economics 28, 31-47]. These principles take into consideration the possibilities of hedging on the financial market and are derived by an indifference argument, which embeds the traditional (actuarial) variance and standard deviation principles in a financial framework. We also investigate an alternative way of transforming actuarial principles and show that for the standard deviation principle this leads to the financial standard deviation principle. The principles are applied for the valuation and hedging of unit-linked life insurance contracts. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:281 / 303
页数:23
相关论文
共 21 条
[1]  
AASE KK, 1994, SCANDINAVIAN ACTUARI, P26
[2]  
[Anonymous], BROWNIAN MOTION STOC
[3]  
[Anonymous], 1989, Numerical Analysis: a comprehensive introduction
[4]  
Delbaen F, 1996, ANN I H POINCARE-PR, V32, P743
[5]  
Delbaen F., 1996, Bernoulli, V2, P81
[6]  
Delbaen F., 1996, BERNOULLI, V2, P379
[7]  
Follmer H., 1986, Contributions to Mathematical Economics
[8]  
GOOVAERTS MJ, 1984, INSURANCE PRENUIUMS
[9]   Mean-variance hedging and numeraire [J].
Gourieroux, C ;
Laurent, JP ;
Pham, H .
MATHEMATICAL FINANCE, 1998, 8 (03) :179-200
[10]  
GRUNDITS P, 1999, MINIMAL ENTROPY MART