High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control

被引:74
作者
Merchan-Merchan, W
Saveliev, AV
Kennedy, LA
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; catalyst support; scanning electron microscopy;
D O I
10.1016/j.carbon.2003.12.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electric field controlled synthesis of carbon nanomaterials on a Ni-based catalytic support positioned at the fuel side of the opposed flow oxy-flame is studied experimentally. Carbon nanomaterials formed on the probe surface are comparatively analyzed for two characteristic operational modes: a grounded probe mode and a floating probe mode. In a grounded mode a number of various carbon nanostructures are formed depending on the probe location in flame. Observed nanoforms include multi-walled carbon nanotubes (MWNTs), MWNT bundles, helically coiled tubular nanofibers, and ribbon-like coiled nanofibers with rectangular cross-section. The presence of various carbon nanoforms is attributed to the space variation of flame parameters, namely flame temperature and concentration of chemical species. It is found that the presence of an electric potential (floating mode operation) provides the ability to control the nanostructure morphology and synthesis rate. A thick layer (35-40 mum) of vertically aligned carbon nanotubes (VACNTs) is found to be formed on the probe surface in the floating potential mode. This layer is characterized by high uniformity and narrow distribution of nanotube diameters. Overall, the electric field control method demonstrates stabilization of the structure in a wide flame region while growth rate remains dependent on flame location. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 32 条
[1]   A FORMATION MECHANISM FOR CATALYTICALLY GROWN HELIX-SHAPED GRAPHITE NANOTUBES [J].
AMELINCKX, S ;
ZHANG, XB ;
BERNAERTS, D ;
ZHANG, XF ;
IVANOV, V ;
NAGY, JB .
SCIENCE, 1994, 265 (5172) :635-639
[2]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[3]  
ANT U, 2002, APPL PHYS LETT, V81, P3464
[4]   Growth of aligned carbon nanotubes by biasing during growth [J].
Avigal, Y ;
Kalish, R .
APPLIED PHYSICS LETTERS, 2001, 78 (16) :2291-2293
[5]   Soot and NO formation in methane-oxygen enriched diffusion flames [J].
Beltrame, A ;
Porshnev, P ;
Merchan-Merchan, W ;
Saveliev, A ;
Fridman, A ;
Kennedy, LA ;
Petrova, O ;
Zhdanok, S ;
Amouri, F ;
Charon, O .
COMBUSTION AND FLAME, 2001, 124 (1-2) :295-310
[6]   Field emission from carbon nanotubes:: perspectives for applications and clues to the emission mechanism [J].
Bonard, JM ;
Salvetat, JP ;
Stöckli, T ;
Forró, L ;
Châtelain, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (03) :245-254
[7]   ELECTRIC EFFECTS IN NANOTUBE GROWTH [J].
COLBERT, DT ;
SMALLEY, RE .
CARBON, 1995, 33 (07) :921-924
[8]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[9]   CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION [J].
GUO, T ;
NIKOLAEV, P ;
THESS, A ;
COLBERT, DT ;
SMALLEY, RE .
CHEMICAL PHYSICS LETTERS, 1995, 243 (1-2) :49-54
[10]  
HEIGHT MJ, 2003, P 3 JOINT M US SECT